Adaptive Science Operations in Deep Space Missions Using Offline Belief State Planning

Grace Kim, Hailey Warner, et al.

Problem

Deep space missions require **robust onboard autonomy** to manage environmental uncertainty **without ground intervention**.

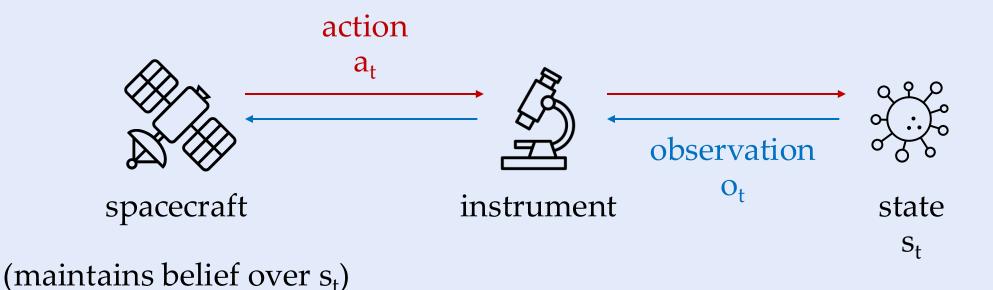
Goal: Design a verifiable autonomy framework that sequences spacecraft science instruments in real time to **maximize science return**.

Case Study: Enceladus Orbilander

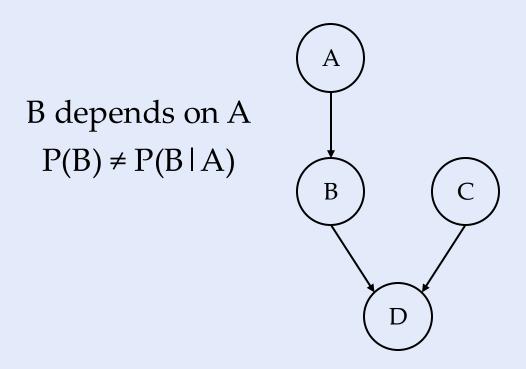
NASA and APL flagship astrobiology mission

12-hour communication blackouts,80-minute delays to Enceladus

Life Detection Suite of 6 instruments



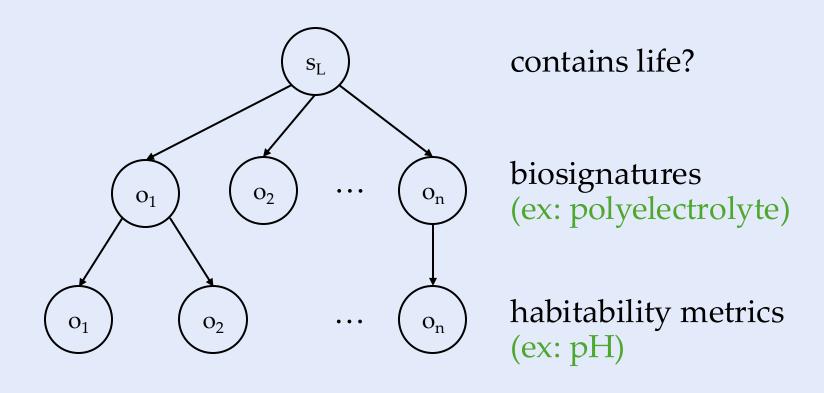
Mackenzie et al. [12]


We present a **partially observable Markov decision process (POMDP)** framework to adaptively sequence science instruments.

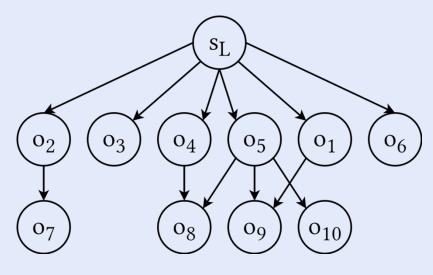
We use a **Bayesian network** to model planetary samples and simplify observations.

Partially Observable Markov Decision Process (POMDP)

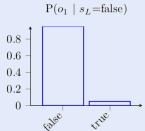
Bayesian Network

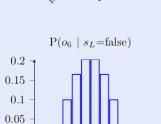


 $15 \rightarrow 8$ parameters!

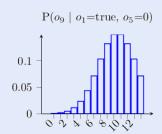

Factored Joint PDF:

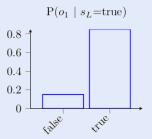
$$P(A,B,C,D) = P(D|B,C) \cdot P(C) \cdot P(B|A) \cdot P(A)$$

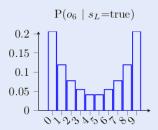

Bayesian Network



Bayesian Network Design

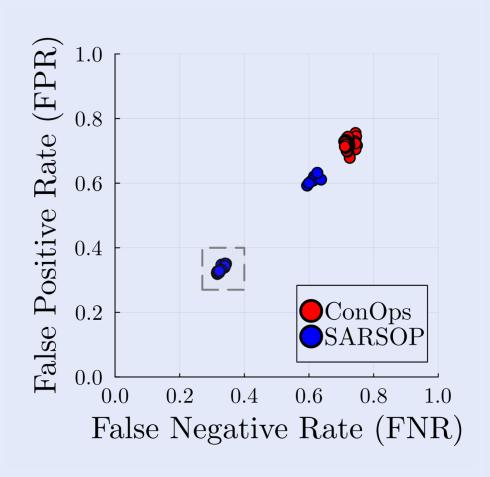


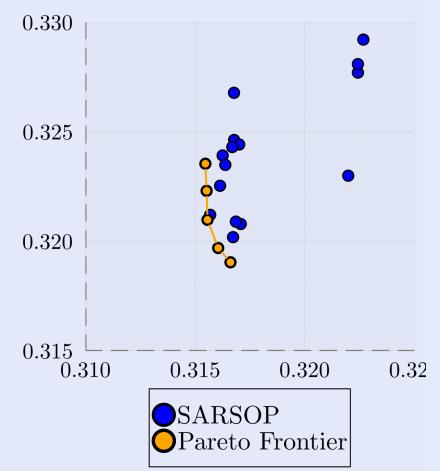

Name	Characteristic	Range	Parent Nodes
${s_L}$	Life	{0,1}	-
o_1	Polyelectrolyte Presence	$\{0,1\}$	s_L
o_2	Cell Membrane Presence	$\{0,1\}$	s_L
o_3	Autofluorescence	$\{0,1\}$	s_L
04	Molecular Assembly Index ≥ 15	$\{0,1\}$	s_L
o_5	Biotic Amino Acid Diversity	$\{0, \ldots, 22\}$	s_L
06	L:R Chirality Ratio (%)	[0, 100]	s_L
07	Salinity (%)	[0, 100]	o_2
o_8	CHNOPS Abundance (%)	[0, 100]	o_4,o_5
09	pН	[0, 14]	o_1, o_5
o_{10}	Redox Potential [V]	[-0.5, 0]	o_5



0723456189

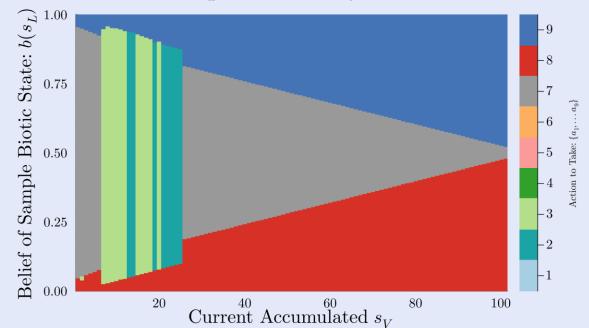
POMDP Design

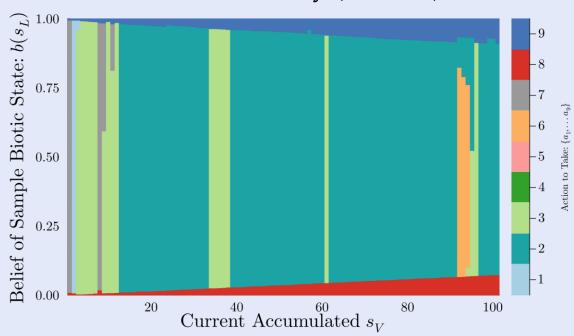

$$T(s,a) = \begin{cases} s'_L \sim P(\text{life}) \\ s'_V = s_V + \mathcal{N}(v_{\text{acc}}, \sigma^2) \end{cases} \quad \text{if } a = a_7$$


$$T(s,a) = \begin{cases} s'_L = s_L \\ s'_V = s_V - v_{use}(a) \end{cases} \quad \text{if } a \in \{a_1, \dots, a_6\}$$

$$s' = \text{terminal} \quad \text{if } a \in \{a_8, a_9\}$$

$$R(s,a) = \begin{cases} 0 & \text{Correct declaration} \\ -\lambda & \text{Incorrect declaration} \\ (1-\lambda)\frac{s_V}{s_V^{max}} & \text{Running instrument} \\ -\infty & \text{Infeasible actions} \end{cases}$$


Selecting a Policy



Visualizing Policies

Selected Policy ($\lambda = 0.95$)

$$\mathcal{A} = \begin{cases} a_1, ..., a_6 & \text{Use instrument } a_i \quad \forall i \in \{1, ..., 6\} \\ a_7 & \text{Accumulate sample volume} \\ a_8 & \text{Declare abiotic (terminal)} \\ a_9 & \text{Declare biotic (terminal)} \end{cases}$$

Performance

Method	Metric	Sample Accumulation Rate	
		Slow ($v_{acc} = 3\%$)	Fast ($v_{acc} = 10\%$)
SARSOP ($\lambda = 0.95$)	FNR (%)	47.7	17.5
	FPR (%)	41.2	17.0
SARSOP ($\lambda = 0.7075$)	FNR (%)	31.4	12.9
	FPR (%)	29.9	18.6
ConOps (Baseline)	FNR (%)	72.4	42.1
	FPR (%)	68.9	43.3

hlwarner@stanford.edu gkim65@stanford.edu sisl.stanford.edu

