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Problem

Deep space missions require robust onboard autonomy to 
manage environmental uncertainty without ground 
intervention.

Goal: Design a verifiable autonomy framework that sequences 
spacecraft science instruments in real time to maximize science 
return.
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Case Study: Enceladus Orbilander

NASA and APL flagship astrobiology mission

12-hour communication blackouts,

80-minute delays to Enceladus

Life Detection Suite of 6 instruments

Mackenzie et al. [12]
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We present a partially observable Markov decision 
process (POMDP) framework to adaptively sequence 

science instruments.

We use a Bayesian network to model planetary samples 
and simplify observations.
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Partially Observable Markov Decision 
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Bayesian Network
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Factored Joint PDF:

P(A,B,C,D) = P(D∣B,C) ⋅ P(C) ⋅  P(B∣A) ⋅ P(A) 

B depends on A

P(B) ≠ P(B|A)

15 → 8 parameters!
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Bayesian Network
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Bayesian Network Design
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POMDP Design
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Selecting a Policy
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Visualizing Policies

Pareto Optimal Policy (λ = 0.7075) Selected Policy (λ = 0.95)
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Performance
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