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Orbital Robotics

Scenarios and Software Architecture

» |In-Orbit Servicing
» Life extension (MEV), Relocation
* Upgrade, Repair (RSGS, EROSS SC)  Apras-J Mission (JAXA) Clearspace-1 (ESA)

= Active Debris Removal

= Astroscale
= ESAADRIOS / Clearspace-1
Motion

» Assembly and Manufacturing v Planning

= EU STARFAB automated
orbitalwarehouse

EROSS SC (EU)
European robotic orbital support services -
servicing component




V&YV for On-Orbit Tasks

DLR
= Verification: does the code perform as it was designed to?
» Validation: does the integrated code perform as it should in the target environment
(e.g. PC/OBC, on-ground/on-orbit)?
» No formal standard for V&V of Optimal Control and DL-based Perception for on-orbit tasks
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Optimal Control | Task 4#7
DLR

Robots involved in highly complex tasks on-orbit
= Highly nonlinear
= Highly constrained

= Often not suitable for convexification

Formulate task as a parametric NLP(p):

= p e R min J(z, p)

. to <t < tf z€RDz

. 5t = % s.t. Gi(z,p) <0, i =0,..,ng
Hi(z,p) = 0, j=0,..,ng

V&V of non-convex optimal control-based methods
» Not codified in literature
» Can follow a similar procedure used in V&V of SW for small satellite

Models are not perfect - uncertainty!




Optimal Control | Method

Task Workspace

» Adiscrete grid on the task parameter space with:
= Admissible solution on the grid points

» Provable estimate of neighborhoods of validity of
the sensitivity-based update for each grid point

_ aron L 92
Z(P)=Z(P)+%(p—p)

= Result:

= |ndication of robustness distribution on the task
parameter space

= Simple onboard computation

Task workspace = .
~
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The Task Workspace in V&V

Admissibility—> Satisfied mission operational
requirements in the presence of uncertainty

Mission planning:
= |dentify the safest corridors within which to
operate

» Targeted, early iteration on mission
requirements

Mission operations:

= Assure robot operators that a generated or
updated motion plan is feasible

» Guide on whether another trajectory should
be considered



| Method

= \We developed a DL method for on-board 6D pose estimation of a known target satellite

= Lightweight architecture for Point
cloud 2 Pose Regression (P2PReg),
encoder based on PointNet layers

Manipulator
Camera

Servicing satellite

Target satellite

LiDARs

= Provides robust initial pose estimate of
a known client satellite, for initializing
the visual tracker

» Processes unordered point sets and
regresses pose parameters adapted
to client object symmetry

!

OOS-SIM (On Orbit Servicing — SIMulator), DLR

[M. Piccinin, U. Hillenbrand, “Deep Learning-based Pose Regression for Satellites: Handling Orientation Ambiguities in LIDAR Data”. Journal Of
Image and Graphics, Vol. 13, No. 2, 2025.]

LR



| V&V

= V&V for DL methods in space safety-critical applications — need of a W-shaped iterative process
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| V&V

= Pose estimation running on space-relevant HW
(ARM v7 processor)

= P2PReg successfully initializing the ICP tracker

= Requirements on translation error (t,,), rotation
error (r,,-) error and compute time (t;.,) are met

10 20 30 A0 50 G0

Evaluation of P2PReg pose initialization on single

point clouds from on OOS-SIM. 10 20 30 A0 50 60
s
= Qutperforms classical and other DL methods EGU-
= Trained for robustness against data artifacts 254 'V , | | | |
and model deviations 10 20 .‘S[}t ’ 40 50 60
» Trained on solely synthetic data, it achieves Pose estimation error and compute time for an

excellent sim2real transfer example trajectory in open-loop PIL tests.




Model-based Design (MBD) 4#7
DLR

DDVV: Design, Development, Validation & Verification

 From Phase A/B1 to incremental Phase C/D
* Incremental TRL improvement

{ MIL @{ SIL ){::E

[ )
PIL
) L ) L
MBD in Project Lifecycle

—

Phase A Phase D

- Different requirements: Models, Sensors/Actuators, On-board computer, Math libraries

* Key objective: Provide a domain-specific DDVV implementation for Orbital Robotics




Model-in-the-Loop (MIL)

* Model-in-the-Loop:
« Components:
« Sensor Performance Models (Camera, LiDAR)
» Actuator Performance Models (joint flexibility)
» Disturbance models (e.qg., sloshing, flexible

appendages)
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Conclusion 4#7
DLR

High-performance perception and control methods need dedicated V&YV standards.

» In optimal control for space, common approaches include convexification, which is not suitable for
robotics. New approaches are proposed for provable treatment of task uncertainty and for substantial

reduction of V&V complexity.

» In ML-based pose estimation, some V&V guidelines are available. They were successfully

implemented in our orbital scenario within MIL/SIL/HIL.

* The Model-based design approach was developed for rapid prototyping in orbital robotics.
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