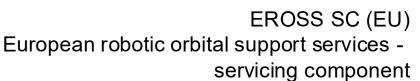
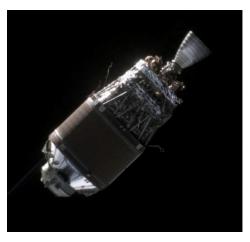
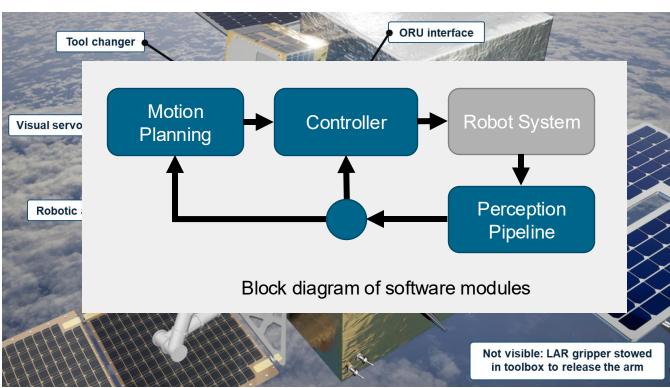
VALIDATION AND VERIFICATION OF SAFETY-CRITICAL ASPECTS OF AUTONOMY IN ORBITAL ROBOTICS


Roberto Lampariello, Caroline Specht, Margherita Piccinin, Hrishik Mishra, Marco De Stefano, Martin Stelzer

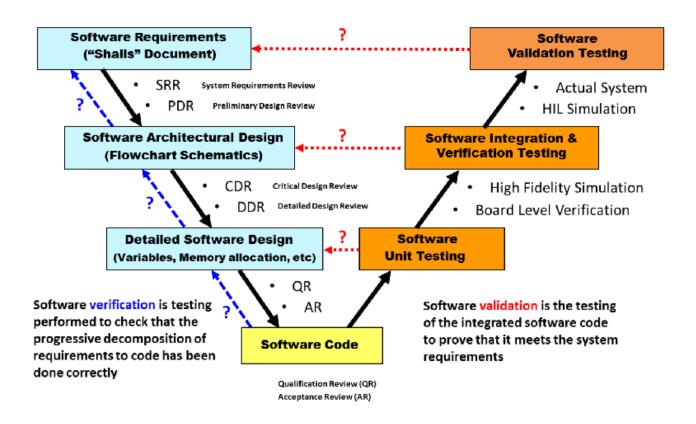

Institute of Robotics and Mechatronics, DLR, Germany

Orbital Robotics Scenarios and Software Architecture

- In-Orbit Servicing
 - Life extension (MEV), Relocation
 - Upgrade, Repair (RSGS, EROSS SC)
- Active Debris Removal
 - Astroscale
 - ESA ADRIOS / Clearspace-1
- Assembly and Manufacturing
 - EU STARFAB automated orbitalwarehouse



ADRAS-J Mission (JAXA)


Clearspace-1 (ESA)

V&V for On-Orbit Tasks

- Verification: does the code perform as it was designed to?
- Validation: does the integrated code perform as it should in the target environment (e.g. PC/OBC, on-ground/on-orbit)?
- No formal standard for V&V of Optimal Control and DL-based Perception for on-orbit tasks

Waterfall software development lifecycle, verification, and validation. Credit: NASA Marshall Space Flight Center, ECSS-M-ST-10C

Optimal Control | Task

- Robots involved in highly complex tasks on-orbit
 - Highly nonlinear
 - Highly constrained
 - Often not suitable for convexification
- Formulate task as a parametric NLP(p):

•
$$p \in \mathbb{R}^{n_p}$$

•
$$t_0 \le t \le t_f$$

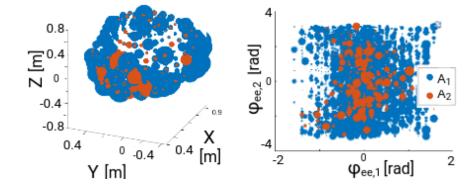
$$\delta t = \frac{t_f - t_0}{n - 1}$$

$$\min_{\mathbf{z}\in\mathbb{R}^{n_z}}J(\mathbf{z},\mathbf{p})$$

$$s.t. \quad G_i(\boldsymbol{z},\boldsymbol{p}) \leq 0, \qquad i = 0, \dots, n_G \\ H_j(\boldsymbol{z},\boldsymbol{p}) = 0, \qquad j = 0, \dots, n_H$$

- V&V of non-convex optimal control-based methods
 - Not codified in literature
 - Can follow a similar procedure used in V&V of SW for small satellite
- Models are not perfect → uncertainty!

Optimal Control | Method

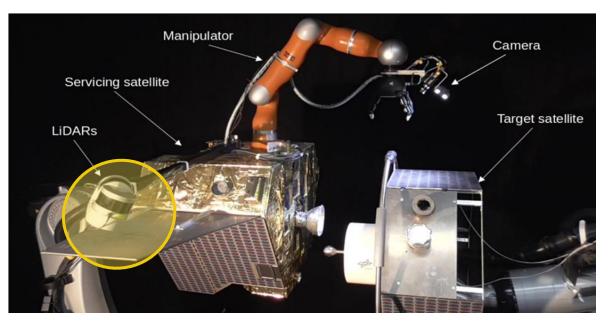

Task Workspace

- A discrete grid on the task parameter space with:
 - Admissible solution on the grid points
 - Provable estimate of neighborhoods of validity of the sensitivity-based update for each grid point

$$\bar{\mathbf{z}}(\mathbf{p}) = \hat{\mathbf{z}}(\hat{\mathbf{p}}) + \frac{dz}{dp}(\mathbf{p} - \hat{\mathbf{p}})$$

- Result:
 - Indication of robustness distribution on the task parameter space
 - Simple onboard computation

Task workspace for robot arm approach task


The Task Workspace in V&V

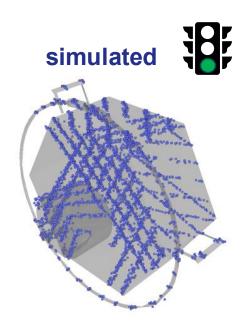
- Admissibility -> Satisfied mission operational requirements in the presence of uncertainty
- Mission planning:
 - Identify the safest corridors within which to operate
 - Targeted, early iteration on mission requirements
- Mission operations:
 - Assure robot operators that a generated or updated motion plan is feasible
 - Guide on whether another trajectory should be considered

DL-based Perception | Method

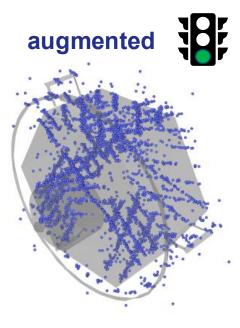
DLR

- We developed a DL method for on-board 6D pose estimation of a known target satellite
 - Lightweight architecture for Point cloud 2 Pose Regression (P2PReg), encoder based on PointNet layers
 - Provides robust initial pose estimate of a known client satellite, for initializing the visual tracker
 - Processes unordered point sets and regresses pose parameters adapted to client object symmetry

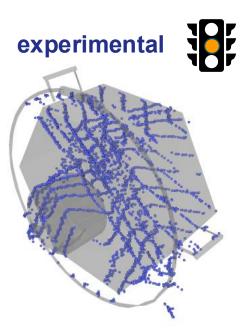
OOS-SIM (On Orbit Servicing – SIMulator), DLR


[M. Piccinin, U. Hillenbrand, "Deep Learning-based Pose Regression for Satellites: Handling Orientation Ambiguities in LiDAR Data". Journal Of Image and Graphics, Vol. 13, No. 2, 2025.]

DL-based Perception | V&V

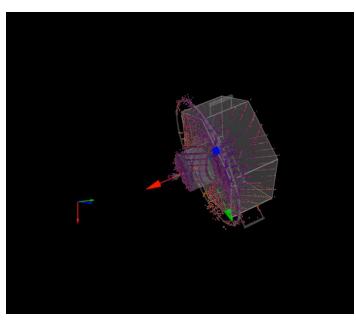

DLR

■ V&V for DL methods in space safety-critical applications → need of a W-shaped iterative process


1. Data quality

Representativeness

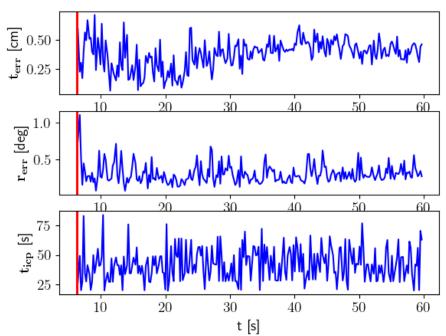
Consistency


- Representativeness
- Fitness
- Metadata quality

Metadata quality

DL-based Perception | V&V

2. Model development and testing

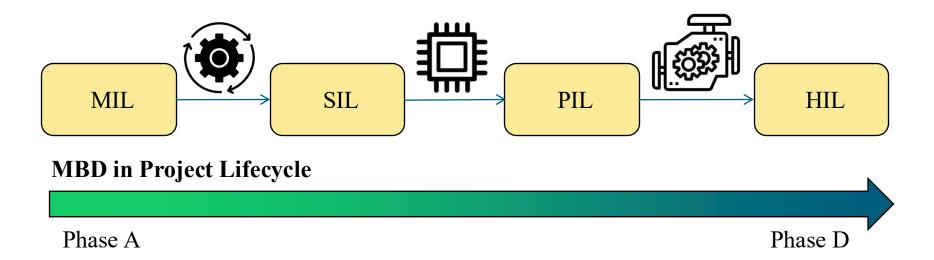


Evaluation of P2PReg pose initialization on single point clouds from on OOS-SIM.

- Outperforms classical and other DL methods
- Trained for robustness against data artifacts and model deviations
- Trained on solely synthetic data, it achieves excellent sim2real transfer

3. System testing

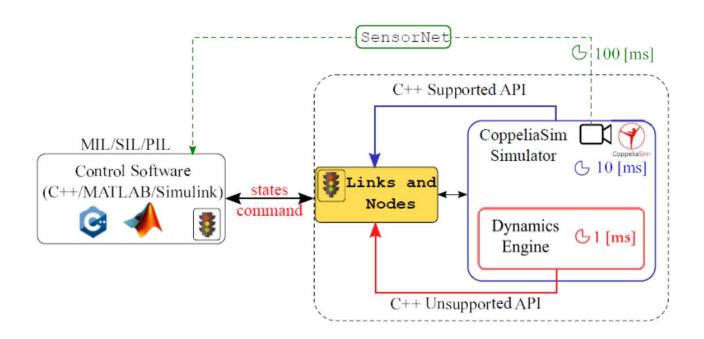
- Pose estimation running on space-relevant HW (ARM v7 processor)
- P2PReg successfully initializing the ICP tracker
- Requirements on translation error (t_{err}) , rotation error (r_{err}) error and compute time (t_{icp}) are met


Pose estimation error and compute time for an example trajectory in open-loop PIL tests.

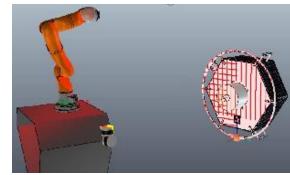
Model-based Design (MBD)

DDVV: Design, Development, Validation & Verification

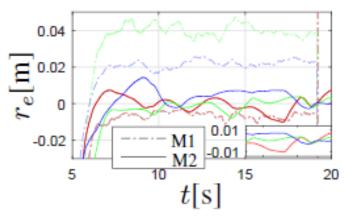
- From Phase A/B1 to incremental Phase C/D
 - Incremental TRL improvement



- **Different requirements**: Models, Sensors/Actuators, On-board computer, Math libraries
- Key objective: Provide a domain-specific DDVV implementation for Orbital Robotics


Model-in-the-Loop (MIL)

DLR


- Model-in-the-Loop:
 - Components:
 - Sensor Performance Models (Camera, LiDAR)
 - Actuator Performance Models (joint flexibility)
 - Disturbance models (e.g., sloshing, flexible appendages)

Perception: Synthetic Sensor data from MIL Framework

Control: Free-floating (M1) vs Free-flying (M2) End-effector controller (pos. error) in MIL Framework

Conclusion

- High-performance perception and control methods need dedicated V&V standards.
- In optimal control for space, common approaches include convexification, which is not suitable for robotics. New approaches are proposed for provable treatment of task uncertainty and for substantial reduction of V&V complexity.
- In ML-based pose estimation, some V&V guidelines are available. They were successfully implemented in our orbital scenario within MIL/SIL/HIL.
- The Model-based design approach was developed for rapid prototyping in orbital robotics.