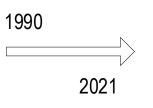
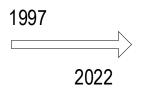

Experimental Study of Magnetically-Actuated Satellite Swarm: Controllability Extension via Time-Integrated Control with Geometry Learning

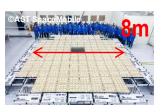

Yuta Takahashi (Institute of Science Tokyo, and Interstellar Technologies(IST)), Seang Shim, Yusuke Sawanishi, Hideki Yoshikado, Masaru Ishida, Noritsuna Imamura, Sumio Morioka (IST), Shin-ichiro Sakai (JAXA/ISAS), and Takahiro Inagawa (IST)

Background Large Space Structures for Science and Business

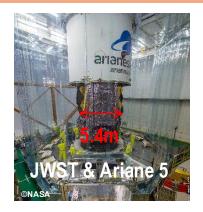
Array performance ∝ diameter

Space telescopes (HST/JWST)





Communication satellites (Iridium/BW3)

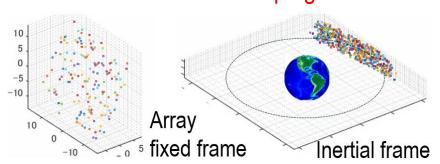


✓ Diameter grown 2-4x (30 years)

Problems

- ∆ Size constraints
- ∆ Difficulty of ground tests
- Δ Single point of failure

Distributed space structure


Scalability is driven by sensor progress outpacing material advancements.

Motivation <u>Unstable Relative Orbital Dynamics and Magnetic Control</u>

Ex) High-speed broadband communication ant.

The satellites of distributed space structure drifts without formation-keeping control.

Electromagnetic formation flight [1,2,20-36]

Long-term formation keeping actuation[1,2]

Prev. experiments: Position control (*N*=2)

3D experiment aboard the ISS under microgravity (Porter, A., K. et al., 2014)

1D experiment (Sedwick, R. J. et al., 2014)

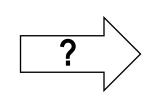
2D experiment by DC current (Kwon, D. W. et al., 2011)

2D experiment (Hariri, N. G., 2018)

AC current experiment for navigation and control (Nurge, M. Et al., 2016)

1D experiment by multi frequency AC current (Sunny, A. et al., 2019)

Docking experiment (Foust, R. C. et al., 2018)

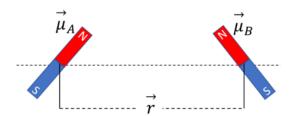

[1] Yuta Takahashi, Hiraku Sakamoto, and Shin-ichiro Sakai, "Kinematics Control of Electromagnetic Formation Flight Using Angular-Momentum Conservation Constraint," AIAA JGCD, 2022.

[2] Seang Shim*, Yuta Takahashi* et al., "Feasibility Analysis of Distributed Space Antennas Using Electromagnetic Formation Flight," 2025 IEEE Aerospace Conference, * co-first.

Our Objective Testbed Design of Magnetically-Actuated Satellite Swarm

Our objective:

Our contribution:


- 1. Survey: the challenges in magnetically formation and attitude control for $N \ge 3$ satellites
 - 1) Nonholonomic constraints
 - 2) Underactuation
 - 3) Scalability
 - 4) Computational cost
- 2. Testbed design for proof-of-concept and evaluation criteria
- 3. Coil geometry learning based on the results of initial experiments

⇒ Our solution: Time-Integrated Control

1) Survey of the challenges in formation and attitude control Tip: Underactuation in Magnetic Control

Magnetic swarm control: \triangle The number of constraints: 6N > The number of variable: 3N [1]

 N satellite × 6-DoF control (force & torque) = constraints: 6N

2) N satellite × 3-axis magnetic coil

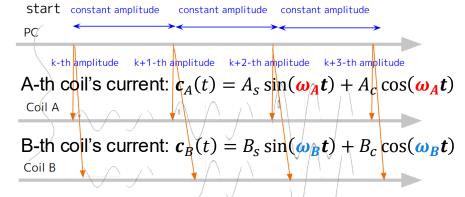
= variable: 3N

 $\mathcal{OPT}_{\mathrm{DC}}$: DC-based Optimal Dipole Allocation Problem

min.
$$J(\mu_{1(x,y,z)}, \dots, \mu_{n(x,y,z)}, \chi)$$

$$\underbrace{\begin{cases} f_{cj(x,y,z)}, \tau_{cj(x,y,z)} = \sum_{k \neq j} \left\{ f_{j \leftarrow k(x,y,z)}, \tau_{j \leftarrow k(x,y,z)} \right\} \\ = \text{Command input} \end{cases}}_{\text{e Command input}} \underbrace{\begin{cases} f_{j \leftarrow k(x,y,z)}, \tau_{j \leftarrow k(x,y,z)} \right\}}_{\text{Variable}} \underbrace{\begin{cases} f_{j \leftarrow k(x,y,z)}, \tau_{j \leftarrow k(x,y,z)} \right\}}_{\text{$$

Fewer variables than constraints


→ possibly no solution

©NanoAvionics, JSC

1) Survey of the challenges in formation and attitude control Controllability Extension via Time-Integrated Control

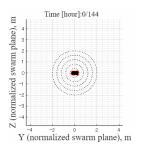
Time-Integrated control [1,2,31]

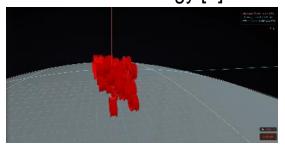
AC magnetic field of multiple frequencies

Different frequency interactions → 0

$$\int_{T} \sin(\omega_{A}\tau) \sin(\omega_{B}\tau) d\tau = 0$$

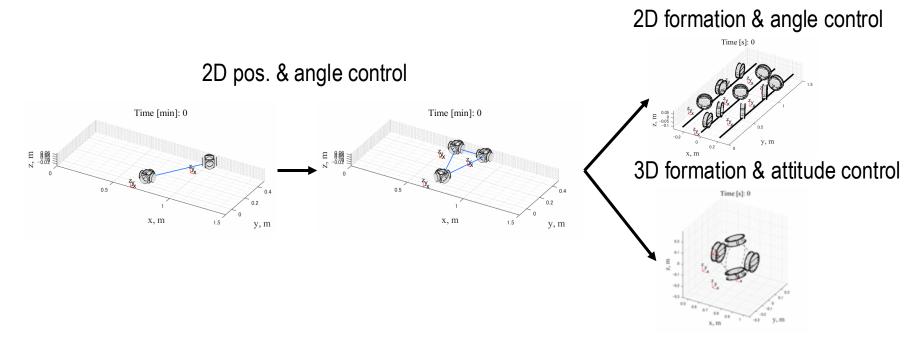
$$\text{if } \omega_{A} \neq \omega_{B}$$
Follower2
Follower2
Leader 3


Controllability extension on average


$$\int_{0}^{T} f_{A \leftarrow B}(t) d\tau \approx \frac{1}{2} \left(f\left(A_{s}, B_{s}\right) + f\left(A_{c}, B_{c}\right) \right)$$

✓ The num. of const. : 6N = The num. of var. : 6N

→Simultaneous control of electromagnetic force and torque on average dynamics [1]


Distance-based swarm control strategy [3]

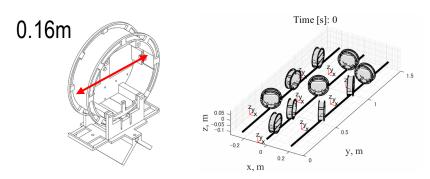
1) Survey of the challenges in formation and attitude control Sequential Ground Experiments

Ground experiments to verify controllability extension by time-integrated control that enables evaluation of control accuracy under orbital formation dynamics.

2) Testbed design for proof-of-concept of Time-Integrated Control Testbed Design for Proof-of-Concept

Opti. for maximizing acceleration

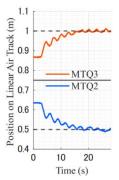
$$\begin{split} D_{\mathrm{coil}}^*, \overline{V}_{\mathrm{cir}}^* &= \underset{D_{\mathrm{coil}}, V_{\mathrm{cir}} \in \mathbb{R}}{\operatorname{max}} \ \frac{\overline{\mu}^2}{m_{\mathrm{coil}}} \\ & \\ s.t. & \begin{cases} m_{\mathrm{coil}} &= \frac{\Omega_{\mathrm{coil}}(V, \overline{c}_{\mathrm{wire}}, k_{\Omega/kg}, \overline{m}_{\mathrm{coil}})}{k_{\Omega/kg}} \leq \overline{m}_{\mathrm{coil}} \\ F(d_0) &= \frac{1}{2} \frac{3\mu_0}{2\pi} \frac{\mu^2}{d^4} \geq a_d \\ t_{coil} &\leq \frac{D_{\mathrm{coil}}}{6} \end{cases} & \text{- mass, acceleration, size constraints} \end{split}$$


1) 1U satellite model

Linear air track: μ -gravity~1e⁻³N

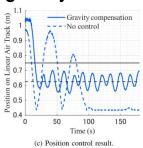
2) 2-axis coil & time-integrated control

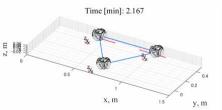
Coordinate transformation $\begin{bmatrix} e_1 \\ e_4 \end{bmatrix} \triangleq \Theta \begin{bmatrix} e_{v_e} \\ e_{p_e} \end{bmatrix}$ between orbital dynamics $\begin{bmatrix} e_1 \\ e_4 \end{bmatrix}$ and experimental dynamics $\begin{bmatrix} e_{v_e} \\ e_{p_e} \end{bmatrix}$ under closed-loop control with input u $u = -\frac{\beta k_A}{2} \left(k_v - \frac{\beta k_A}{2} \right) L^2(p-p_d) - k_v L(v-v_d)$


$$u = -\frac{\beta k_A}{2} \left(k_v - \frac{\beta k_A}{2} \right) L^2(p - p_d) - k_v L(v - v_d)$$

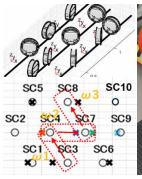
L Evaluation criteria

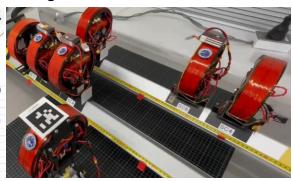
2) Testbed design for proof-of-concept of Time-Integrated Control Testbed Design for Proof-of-Concept

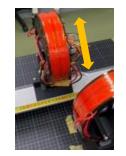

1D positional control under μ-gravity

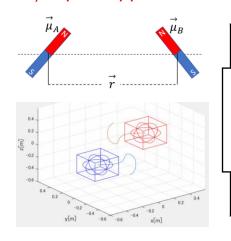


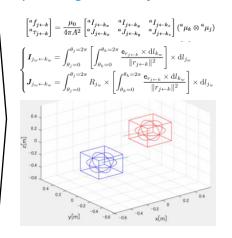
2D positional control under μ-gravity

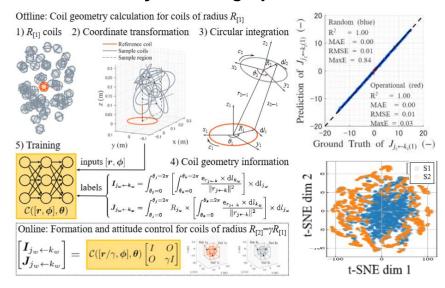



✓ On-going experiments under µ-gravity 2D pos. & angle control


2D formation & angle control


3) Coil geometry learning based on the results of initial experiments High-Accuracy Magnetic-Field Interaction Control


Unintended vibration due to dipole approximation error (neglecting computationally intensive coil geometry)


Docking simulation comparison

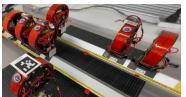
1) Dipole approximation, 2) Coil geometry-based

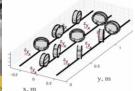
Coil Geometry Learning by MLP: 146 KB

- Average calculation time: 0.36 s → 0.03s
- Standard deviation: $0.53 \text{ s} \rightarrow 0.01 \text{ s}$ (**stable**)
- ✓ High-accuracy magnetic-field control

Conclusion Research Objective and Presentation Summary

Our objective: magnetically formation and attitude control for $N \ge 3$ satellites


Our contribution:


- 1. Survey of the challenges and solution
 - 1) Challenges: Nonholonomic constraints, Underactuation, Scalability, Computational cost
 - 2) Solution: Time-integrated control
- 2. Testbed design for time-integrated control and evaluation criteria

3. Coil geometry learning based on the results of initial experiments

Reference

[45] Febse, W., 2003. Automated rendezyous and docking of spacegraft (Vol. 16). Cambridge university press.

```
[11] Takahashi, Y., Sakamoto, H., & Sakai, S. I., "Kinematics Control of Electromagnetic Formation Flight Using Angular-Momentum Conservation Constraint," AIAA JGCD, 2022.
[2] Takahashi, Y., "Study on Guidance and Control of Large-Scale Electromagnetic Formation Flight," Master's Thesis, Tokyo Institute of Technology, Tokyo, 2021.
[3] Takahashi, Y., et. al., "Distance-Based Relative Orbital Transition for Palm-Sized Satellite Swarm with Guaranteed Escape-Avoidance," AIAA Sci Tech 2025, accepted and selected as a Finalist for the 2025 GNC Graduate Student Paper Competition.
[4] Fehse, W., Automated rendezyous and docking of space-craft, Vol. 16, Cambridge University Press, 2003,
[5] Schweighart, S. A., and Sedwick, R. J., "High-fidelity Lin-earized J2 Model for Satellite Formation Flight," Journal of Guidance, Control, and Dynamics, Vol. 25, No. 6, 2002.
161 Morgan, D., Chung, S. J., Blackmore, L., Acikmese, B., Bayard, D., and Hadaegh, F. Y., "Swarm-Keeging Strate-gies for Spacecraft under 1/2 and Atmospheric Drag Per-turbations," Journal of Guidance, Control, and Dynamics, Vol., 35, No. 5, 2012, pp. 1492-1506.
[7] Xu, G., and Wang, D., "Nonlinear Dynamic Equations of Satellite Relative Motion Around an Oblate Earth," Journal of Guidance, Control, and Dynamics, Vol. 31, No. 5, 2008, pp. 1521-1524.
[8] Brown, O., Eremenko, P. and Hamilton, B.A., "Fracionated Space Architectures; a Vision for Responsive Space.," In 4th Responsive Space Conference, Vol. 2006, No. 1002, Los Angeles, 2006.
[9] Wang, P., and Hadaegh, F., "Coordination and Control of Multiple Microspacecraft Moving in Formation." Journal of the Astronautical Sciences, Vol. 44, No. 3, 1996, pp. 315-355.
110 Havres, M.S., Beauchamo, R.M., Khazendar, A., Ma-zouz, R., Quadrelli, M.B., Focard, P., Hodoes, R.E., Bertiger, W. and Bienert, N., "Debris: Dis-tributed Element Beamformer Radar for Ice and Subsur-face Sounding." IEEE International Geoscience and Re-mote Sensing Symposium, 2021, pp. 661-654.
[11] Quadrelli, M. B., Hodges, R., Vilhrotter, V., Bandy-opadhyay, S., Tassi, F., and Beyilacqua, S., "Distributed Swarm Antenna Arrays for Deep Space Applications," IEEE Aerospace Conference, Big Sky, MT, USA, 2019.pp. 1-15.
[12] Tuzi, D., Delamotte, T., and Knopp, A., "Satellite Swarm-Based Antenna Arrays for 6G Direct-to-Cell Connectiv-ity," IEEE Access, Vol. 11, 2023, pp. 36 907–36 928.
1131 Manchester, Z., Peck, M. and Filo, A. "Kicksat, A Crowd-Funded Mission to Demonstrate the World's SmallestSpacecraft," In Proceedings of the 27th AIAA/USU Con-ference, Small Satellite Constellations, Logan, Utah, USA SSC13-IX-5.
1141 Hu, Z., Timmons, T., Stamat, L. and McInnes, C., "Devel-coment of a 10g Femtosatellite with Active Attitude Con-trol," 17th Reinventing Space Conference, Belfast, North-em Ireland, 12-14 Nov 2019.
[15] Cao, J., "Active Control of Femtosatellite Swarms for Syn-thetic Aperture Rada," Ph.D. Dissertation, 2020.
[16] Timmons, T., Beeley, J., Bailet, G., and McInnes, C.R., "Range-Based Relative Navigation for a Swarm of Centimeter-Scale Femb-Spacecraft," Journal of Guid-ance, Control, and Dynamics, Vol. 45, No. 9, 2022, pp. 1583-1597.
[17] Cao, J., Clemente, C., McInnes, C.R., Soraghan, J. and Ultam chandani, D., "A Novel Concept for Earth Remote Sensing using a Bistatic Femb-Satellite Swarm in Sun Synchronous Orbit." In 66th International Astronautical Congress, Jerusalem, Israel. 2015.
[18] Kennedy III, T., Hibberd, P.B.A.H.A. and Robert, G., "Swarming Proxima Centauri: Optical Communication Over Interstellar Distances," arXiv preprint, 2023, arXiv 2309.07061.
[19] Ivanov, D., M. Kushniruk, and M. Ovchinnikov, "Study of Satellite Formation Flying Control Using Differential Liftand Drag," Acta Astronautica, Vol. 152, 2018, pp 88-100.
[20] Aya, S., "Micro-electromagnetic formation flight of satel-lite systems," Master diss., Massachusetts Institute of Technology, 2005.
[21] Ivanov, D., Gondar, R., Monakhova, U., Guerman, A., and Ovchinnikov, M., "Electromagnetic Uncoordinated Control of a ChipS ats Swarm Using Magnetorouers," ActaAstronautica. Vol. 192. 2022. pp. 15-29.
1221 Takahashi, Y., Sakamoto, H. and Sakai, S., "Simultaneous Control of Relative Position and Absolute Attitude for Electromagnetic Spacecraft Swamm." AIAA Scitech 2021 Forum, 2021. https://doi.org/10.2514/6.2021-1104
[23] Takahashi, Y., Sakamoto, H. and Sakai, S, Kinemat-ics Control of Electromagnetic Formation Right UsingAngular-Momentum Consensation Constraint, Journal of Guidance, Control, and Dynamics, Vol. 45, No. 2, 2022 pp. 280-295, https://doi.org/10.2514/j.G005873
[24] Takahashi, Y., Sakamoto, H. and Sakai, S., "Control Lawof Electromagnetic Formation Flight Utilizing Conserva-tion of Angular Momentum Time-Varying Control with-out Using Additional Attitude Actuator," The 30th Workshop on JAXA Astrodynamics and Flight Mechanics, 2020.
[25] Schweighart, S. A., "Electromagnetic Formation FlightDipole Solution Planning," Ph.D. Thesis, MassachusettsInst. of Technology, 2005.
[26] Zhang, C., and Huang, X., "Angular-Momentum Man-agement of Electromagnetic Formation Flight Using Al-ternating Magnetic Fields," Journal of Guidance Control Dynamics, Vol. 39, No. 6, 2016, pp. 1292-1302.
[27] Tajima, H., Takahashi, Y., Shibata, T., and Sakai, S., Study on Short Range Formation Flight and DockingControl Using AC Magnetic Field," 74th International Astronautical Congress, Baku, Azerbaijan, 2-6 October 2023.
[28] Hairir, N.G., "Vision-Based Navigation for Electromag-netic Formation Flight," Diss Florida Institute of Tech-nology, 2018.
[29] Avarez, D.A., "Multi-Degree of Freedom Posi-tion and Attitude Control of RINGS Dipoles Us-ing Electromagnetic Forces and Torques," 2021, https://repository.frit.edu/etd/1014/
30) Porter, A., Alinger, D., Sedwick, R., Merk, J., Opper-man, R., Buck, A., Eslinger, G., Fisher, P., Miller, D., and Bou, E., "Demonstration of Bectromagnetic FormationFlight and Wireless Power Transfer," Journal of Space-craft and Rockets, Vol. 51, No. 6, 2014, pp. 1914–1923. https://doi.org/10.2514/11.432940
[31] Sakai, S., Kaneda, R., Maeda, K., Saitoh, T., Saito, H. and Hashimoto, T., "Electromagnetic Formation Flightfoil EO Satellities," 3rd International Symposium on Formation Flying, Missions and Technologies, 2008.
[32] Sunny, A., "Single-Degree-of-Freedom Experiments Demonstrating Electromagnetic Formation Flying foo mall Satellite Swarms using Piecewise Sinusoidal Con-trols," Master Theses and Dissertations-Mechanical En-gineering. 146, 2019.
[33] Nurge, M. A., Youngquist, R. C., and Starr, S. O., "ASatellite Formation Flying Approach Providing Both Posi-tioning and Tracking," Acta Astronautica, Vol. 122, 2016 pp. 1-9.
[34] Abbasi, Z., Hoagg, J.B. and Seigler, T.M., "Decentral-ized Electromagnetic Formation Flight Using Alternating Magnetic Field Forces," IEEE Transactions on Control Systems Technology, 2022.
135] hamori, T., Ji-Hyun, P., Nagai, K., Tamura, H., Xinbo,G., Fujita, Y., Yamaquchi, R., Miyamoto, T., Ukita, D. Osaki, T. and Sakaguchi, Y., "In-Orbit Demonstration of Propellant-Less Formation Flight with Momentum Ex-change of Jointed Multiple CubeSats in the MAGNARO Mission." 2022.
1361 Shibata, T. and Sakai, S., "A Contactless Micro-Vibration Solator Using the Flux Pinning Effect for Space Tele-scopes," Journal of Spacecraft and Rockets Vol. 59, No. 2, 2022, pp. 651-659.
[37] Hadaegh, Fred Y., Soon Jo Chung, and Harish M. Manohara. "On development of 100-gram-class spacecraft for swarm applications." IEEE Systems Journal 10.2 (2014): 673-684.
[38] Koenig, A. W. and D'Amico, S., 2018. Robust and safe N-spacecraft swarming in perturbed near-circul ar orbits. Journal of Guidance, Control, and Dynamics, 41(8), pp.1643-1662.
[39] Manchester, Z., Peck, M. and Filo, A., 2013. Kicksat: A crowd-funded mission to demonstrate the world's smallest spacecraft.
[40] Manchester, Z., 2015. Centimeter-scal e spacecraft: Design, fabrication, and deployment.
[41] Ivanov, D., Gondar, R., Monakhova, U., Guerman, A., and Ovchi nnikov, M., "Electromagnetic Uncoordinated Control of a ChipSats Swarm Using Magnetorquers," Acta Astronautica, Vol. 192, 2022, pp. 15-29.
[42] Zavlanos, M.M., Egerstedt, M.B. and Pappas, G.J., 2011. Graph-theoretic connectivity control of mobile robot networks. Proceedings of the IEEE, 99(9), pp. 1525-1540.
[43] Zareh, M., Sabattini, L. and Secchi, C., 2016, December. Enforcing biconnectivity in multi-robot systems. In 2016 IEEE 55th Conference on Decision and Control (CDC) (pp. 1800-1805). IEEE.
```

[44] Khateri, K., Pourgholi, M., Montazeri, M. and Sabattini, L., 2019. A comparison between decentralized local and global methods for connectivity maintenance of multi-robot networks. IEEE Robotics and Automation Letters, 4(2), pp.633-640

Thank you for your time and attention!