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Array performance ∝ diameter

• Space telescopes (HST/JWST) 

• Communication satellites (Iridium/BW3)

✓ Diameter grown 2-4x (30 years)

2

Problems 
∆ Size constraints 
∆ Difficulty of ground tests

∆ Single point of failure 

Distributed space structure
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Scalability is driven 

by sensor progress 

outpacing material 

advancements.

2.4m
6.5m

~2m
8m

Background

Large Space Structures for Science and Business 

5.4m

JWST & Ariane 5
©NASA



[1] Yuta Takahashi, Hiraku Sakamoto, and Shin-ichiro Sakai, “Kinematics Control of Electromagnetic Formation Flight Using Angular-Momentum Conservation Constraint,” AIAA JGCD, 2022.

[2] Seang Shim*, Yuta Takahashi* et al., “Feasibility Analysis of Distributed Space Antennas Using Electromagnetic Formation Flight,” 2025 IEEE Aerospace Conference, * co-first.

Ex) High-speed broadband communication ant.

The satellites of distributed space structure

drifts without formation-keeping control.

Motivation

Unstable Relative Orbital Dynamics and Magnetic Control 

Electromagnetic formation flight [1,2,20-36]

✓ Long-term formation keeping actuation[1,2]

Prev. experiments: Position control (N=2)

3D experiment aboard the 
ISS under microgravity 
(Porter, A., K. et al., 2014)

©Interstellar Technologies



Our objective: 

Our contribution: 
1. Survey: the challenges in magnetically formation and attitude control for 𝑁≥3 satellites

1) Nonholonomic constraints

2) Underactuation

3) Scalability

4) Computational cost         

2. Testbed design for proof-of-concept and evaluation criteria

3. Coil geometry learning based on the results of initial experiments

Our Objective

Testbed Design of Magnetically-Actuated Satellite Swarm

?

⇒ Our solution: Time-Integrated Control

N=2 N≫3



Magnetic swarm control: △The number of constraints: 6N > The number of variable: 3N [1]

 

1) Survey of the challenges in formation and attitude control 

Tip: Underactuation in Magnetic Control

©NanoAvionics、JSC

2) N satellite × 3-axis magnetic coil
= variable: 3N

 Fewer variables than constraints 

→ possibly no solution

1) N satellite×6-DoF control     
(force & torque) = constraints: 6N

[1] Yuta Takahashi, Hiraku Sakamoto, and Shin-ichiro Sakai, “Kinematics Control of Electromagnetic Formation Flight Using Angular-Momentum Conservation Constraint,” AIAA JGCD, 2022.



Time-Integrated control [1,2,31]
• AC magnetic field of multiple frequencies

 

• Different frequency interactions → 0
       

 ∫𝑇sin 𝝎𝑨𝜏 sin 𝝎𝑩𝜏 d𝜏 = 0    

           if 𝝎𝑨 ≠ 𝝎𝑩

A-th coil’s current: 𝒄𝐴 𝑡 = 𝐴𝑠 sin 𝝎𝑨𝒕 + 𝐴𝑐 cos 𝝎𝑨𝒕

B-th coil’s current: 𝒄𝐵 𝑡 = 𝐵𝑠 sin 𝝎𝑩𝒕 + 𝐵𝑐 cos 𝝎𝑩𝒕

• Controllability extension on average

✓The num. of const. : 6N = The num. of var. : 6N
→Simultaneous control of electromagnetic force 

and torque on average dynamics [1]

Distance-based swarm control strategy [3]

1) Survey of the challenges in formation and attitude control 

Controllability Extension via Time-Integrated Control

[3] Takahashi, Yuta, Seang Shim, and Shin-ichiro Sakai. "Distance-Based Relative Orbital Transition for Palm-Sized Satellite Swarm With Guaranteed Escape-Avoidance." In AIAA Scitech 2025 Forum, 2025, selected as a 

Finalist for the Best Student Paper Award of the GNC graduate student paper competition at the AIAA SciTech Forum 2025.
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1) Survey of the challenges in formation and attitude control 

Sequential Ground Experiments 

Ground experiments to verify controllability extension by time-integrated control 
that enables evaluation of control accuracy under orbital formation dynamics.

2D pos. & angle control

2D formation & angle control

3D formation & attitude control



2) 2-axis coil & time-integrated control

Coordinate transformation                between 

orbital dynamics      and experimental dynamics     

      under closed-loop control with input 𝑢

 ↳ Evaluation criteria

Opti. for maximizing acceleration

 

1) 1U satellite model

 

2) Testbed design for proof-of-concept of Time-Integrated Control 

Testbed Design for Proof-of-Concept

Linear air track: μ-gravity~1e-3N

0.16m

・ mass, acceleration, 

size constraints



✓ On-going experiments under μ-gravity

2D pos. & angle control

2D formation & angle control

1D positional control under μ-gravity

 

2D positional control under μ-gravity

2) Testbed design for proof-of-concept of Time-Integrated Control 

Testbed Design for Proof-of-Concept



Coil Geometry Learning by MLP: 146 KB

・Average calculation time: 0.36 s → 0.03s

・Standard deviation: 0.53 s → 0.01 s (stable)

✓ High-accuracy magnetic-field control

3) Coil geometry learning based on the results of initial experiments

High-Accuracy Magnetic-Field Interaction Control

Unintended vibration due to

dipole approximation error
(neglecting computationally intensive coil geometry)

Docking simulation comparison
1) Dipole approximation, 2) Coil geometry-based



Conclusion

Research Objective and Presentation Summary

Our objective: magnetically formation and attitude control for 𝑁≥3 satellites

Our contribution: 
1. Survey of the challenges and solution

1) Challenges: Nonholonomic constraints, Underactuation, Scalability, Computational cost

2) Solution: Time-integrated control       

2. Testbed design for time-integrated control and evaluation criteria

3. Coil geometry learning based on the results of initial experiments
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