

The Future of Robotics in Space

The Journey from Exploration to Commercialization

Brice Howard

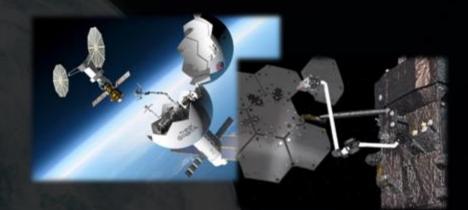
Space Robotics Advocate

Space: The \$1.8 Trillion Opportunity

McKinsey & Company

EXPLORATION

COMMERCIALIZATION



New Space Industry – The Great Hope

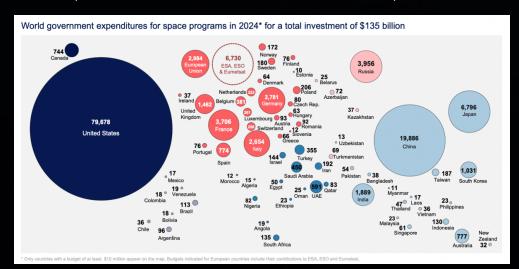


Robotics

are the equipment that will move the space industry

Todays Space Industry – Where are all the customers

Government


\$80B USA

\$60B

Civil Market \$25B USA

Defense Market \$55B USA

2024

\$590B

Satellite Market

New Space Market

Private Investment

Todays State Of In-Space Robotics Technology

Dynamic Grappling

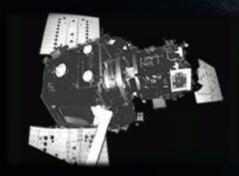
Mani	pulators

Mobility Units			
Mars Path Finder	1996	Mars	
Mars Exploration Rover	2003	Mars	
MSL - Curiosity	2011	Mars	
Chang'E 3	2013	Lunar - China	
Chang'E 4	2018	Lunar - China	
Tutu-2	2019	Lunar - China	
Perseverance	2020	Mars	
Zhurong	2020	Lunar - China	
Pragyan (Chandrayaan-3)	2023	LunarIndia	
Manipulators			
Canadarm 1	1981	ISS	
RoTeX	1993	ISS	
EST-VII	1997	Satellite Servicer	
Canadarm 2	2001	ISS	
Orbital Express	2004	Satellite Servicer	
JEMRMS	2007	ISS	
Dextre	2008	ISS	
ALONG-1	2016	China	
Perseverance arm	2020	Mars	
CMM (Core Module Manipulator)	2021	China	
EMM (Experimental Module Manipulator)	2022	China	
Gitai	2024	ISS	

Spacecraft	
Hayabusa	2003 Lunar
ROSETTA	2014 Lunar
Hayabusa-2	2014 Lunar
Section 1995 Annual Control	
Landers	
Surveyor 3	1967 Lunar
Luna 16	1970 Lunar
Luna 17	1970 Lunar
Luna 20	1972 Lunar
Luna 21	1973 Lunar
Luna 24	1976 Lunar
Viking	1975 Lunar
Phoenix	2008 Mars
insight	2018 Mars
(Chandrayaan-3)	2023 Lunar
SLIM	2023 Lunar
Intuitive Machines	2024 Lunar
Other	
ROKVIS	2004 ISS
Robonaunt	2008 ISS
Ingenuity - helicopter	2020 Mars

Todays State Of In-Space Robotics Technology

Canada 2 Arm

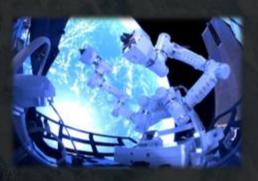


\$1.4B 15yrs Lead Thousands Ops Hours

> **Delivered** 2001

Free Fly Grappling Remotely Operated

Pick and Place Remotely operated **Orbital Express Arm**


\$100M+ 5Yrs Lead ~10 Ops Hours

Delivered 2004

Free Fly Grappling *Autonomous*

Simi - Autonomous

GITAI S2

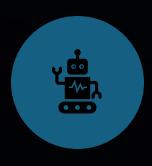
\$20M+ 2Yrs Lead ~100 Ops Hours

> **Delivered** 2024

Free Fly Grappling NOT DEMONSTRATED

Pick and Place Simi - Autonomous MRV (RSGS)

\$100M+ 10Yrs Lead N/A Ops Hours


Delivered 2026 (planned)

Grappling Autonomous

Pick and Place Simi - Autonomous

Pick and Place

So, what's the Problem? Where are all the robots?

The Perception Gap:

Public perception seems to be running ahead of reality, leading to misplaced industry focus and underinvestment in critical robotics technology.

High Costs and Limited Deployment:

Space robots are expensive and fragile, preventing large-scale adoption and slowing the commercialization of space.

Bespoke Designs and Limited Testing:

Space robots are built as one-off, mission-specific systems with long development cycles, and the lack of on-orbit testing limits innovation.

Human and Supply Chain Bottleneck:

Space robotics depends on expert operators and lacks a reliable supply chain, restricting scalability and real-world applications.

We need to shift industry focus and investments

toward developing versatile, in-space tools that can support a wide range of missions and accelerate innovation.

We need an affordable, robust, and flexible robotic toolset

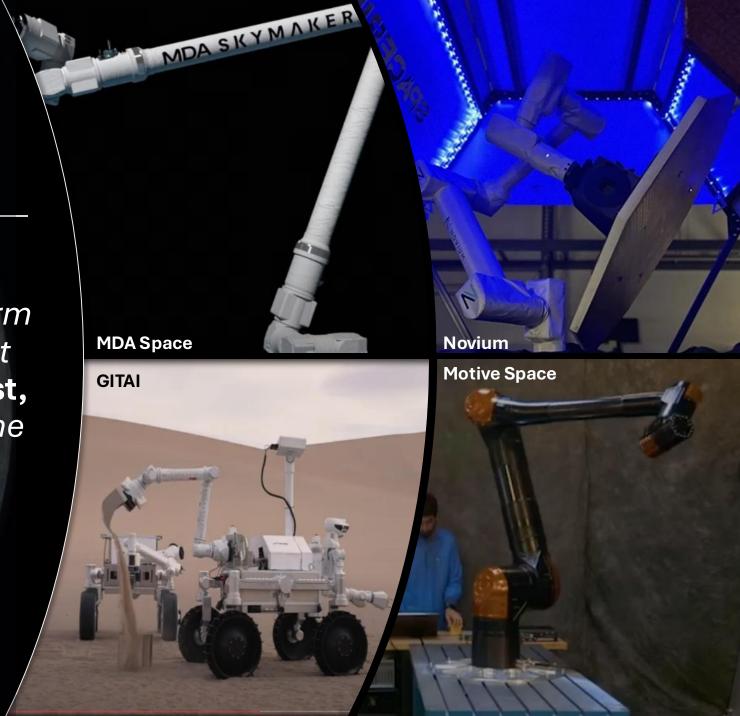
that can support a wide range of space missions, drive down costs, and enable scalable, repeatable operations across the industry.

We need frequent, affordable access to on-orbit testing

to accelerate robotic development and unlock the full potential of space robotics

We need to lower the barrier to operation,

providing intuitive, user-friendly systems that allow customers to focus on their mission, not on managing complex robotics.


We need to commoditize space robotics,

transforming them into standardized, scalable solutions that are accessible and cost-effective for a broad range of space missions.

THE DEMAND IS CLEAR

Robotics must become a near term industry priority, with investment focused on developing a low-cost, robust toolset that will unlock the next frontier of space commercialization.

Next Steps

Focus on deploying Technology Fundamentals

On-Orbit Logistics

Environmental Rugged Hardware

Communication Network

Workspace Mapping

Standardized Interfaces

Robotic Dynamic Grappling (Autonomous)

Robotic Pick and Place

GET INTO SPACE

Remote Operations

Remote Operations

Lunar Logistics

Environmental Rugged HardwareCommunication Network

Navigation (Lunar PNT)

Workspace Mapping
Standardized Interfaces
Robotic Dynamic Grappling
Robotic Pick and Place
Remote Operation

Improving Life on Earth

Aviation

Environmental Rugged Hardware
Communication Network
Landing Contact Dynamics
Remote Operations

Mining

Environmental Rugged Hardware Communication Mesh Network

Navigation
Workspace Mapping
Standardized Interfaces
Robotic Dynamic Grappling
Robotic Pick and Place
Remote Operation

NAVY Unmanned aircraft

Underground mine tunnels with mobile communication mesh network

Underground Drill rig

A Call to Action

Help Align Perception with Reality

Raise awareness of where space robotics truly stands today. We need more science, less science fiction!

There is lots of work, lets get busy

Advocate for Investment in Scalable, Low-Cost Robotics

Shift funding toward robust, affordable robotic solutions that drive mission success and industry growth.

Remote operations will be the cornerstone of the industry

Unite as a Robotics Community

Collaboration, not competition, will accelerate progress. Let's support each other's successes and push the field forward together

Make Robotics the Industry Priority

Space robotics isn't just a tool—it's the key to unlocking the next era of space commercialization.

