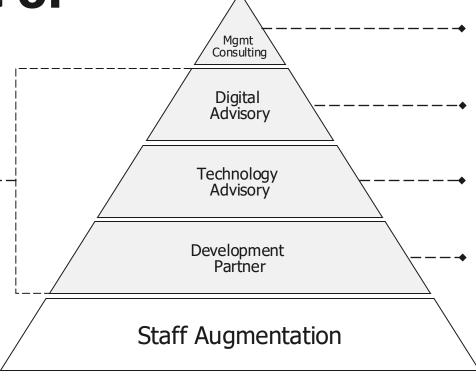
Mission Critical — Simulate First

softserve

Presenter

Lutz Richter is Space Projects Expert at SoftServe with over 25 years of experience in space robotics. He has contributed to major missions with ESA, NASA, and JAXA, including ESA's Rosetta and Mars Express (Beagle 2), NASA's Mars Exploration Rovers, and JAXA's Hayabusa-2 with the MASCOT lander.

Lutz has led the development of planetary rover mobility and sampling systems, notably for ESA's ExoMars mission. He also spearheads instrument development for upcoming lunar missions and serves as 1st Vice President of the International Society of Terrain-Vehicle Systems (ISTVS), supporting global research in terramechanics and lunar exploration.



Space Projects Consultant
Robotics & Advanced Automation, SoftServe
Irich@softserveinc.com

We are Advisors and Providers who Operate at the Cutting Edge of Technology

Where softserve operates

How We Fit with Consulting Partners

We translate your vision into concrete actions and deliver results

Our Advisory division can complement your efforts with specialized technical expertise

Our world-class engineering know-how enables us to offer strategic advice on the best technology solutions

Our high-quality teams integrate seamlessly with yours to deliver high-quality solutions

82 Connections 150k Downloads 106k Unique Users

SOFTSERVE AND NVIDIA

A strategic partnership for scalable innovation

ELITE SERVICE DELIVERY PARTNER STATUS

150+

750+

People experienced in NVIDIA stack and **Professional Services** as an Elite SDP

Experts in BigData, AI/ML, Robotics, IoT, AR/VR and R&D

GLOBAL LAUNCH PARTNER FOR OMNIVERSE

Dedicated Omniverse Competency Team being deployed, capable of developing connectors, extensions, IsaacSim robotic simulation, CloudXR, and heavy focus around Digital Twins industrial solutions.

EXPERTISE IN USING GPUS IN THE CLOUD

1,200+

Cloud Experts

We have the highest level of partnerships with AWS, GCP, Azure and OCI.

soft**serve**

NVIDIA OMNIVERSE EXPLORER GLOBAL LAUNCH PARTNER

NVIDIA AI ENTERPRISE SERVICE DELIVERY PARTNER

EMBEDDED EDGE **COMPETENCY PARTNER**

Key Trends

Use Cases in Earth Orbit and beyond

- Responsive space
- Dynamic space
- Space "warfighting"
- Compromised communications
- Rendezvous and proximity operations (RPO):
 - o OOS, inspection, dynamic space
- More extensive autonomy
- Planetary robotics: autonomous sampling
- XR in Humanoid Robot teleoperation and training

Common **Denominators**

- Need for fuller autonomy (disrupted comms or large latency)
- More comprehensive sensor suites

Important Driver: Price of space robotic systems

Space: Science & Technology

A SCIENCE PARTNER JOURNAL

RESEARCH ARTICLE

Orbital Blocking Game Near Earth-Moon L₁ **Libration Point**

Hongyu Han1, and Zhaohui Dang2*

¹School of Astronautics, Northwestern Polytechnical University, Xi'an, 710072, China, ²National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an, 710072, China.

*Address to correspondence to: dangzhaohui@nwpu.edu.cn

This paper explores the blocking capabilities of a spacecraft deployed near Earth-Moon L_1 libration point against another spacecraft attempting lunar gravity assist, based on the ΔV required for interception. The study demonstrates that a pursuer at L₁ libration point can effectively block low-energy evaders with minimal ΔV expenditure, creating a blockade against their use of gravity assists. However, blocking against highenergy evaders is relatively weaker. Pursuers on Lyapunov orbits can execute blockades that L1 pursuers cannot, albeit with lower mission-capable rates. The paper discusses mission-capable rates for different Lyapunov orbits and evader energies, revealing that each Lyapunov orbit has its unique optimal blocking energy, decreasing as the Lyapunov orbit size expands. In addition, the paper proposes a strategy for evaders to bypass blockades by sacrificing a portion of their ΔV and verifies it numerically. The analysis covers the cost and benefits of the L. libration point-related blockade, the importance of the mission-capable rate, and

Submitted 3 September 2023 Accepted 27 October 2023 Published 6 December 2023

org/10.34133/space.0102

Copyright © 2023 Hongyu Han and Zhaohui Dang Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0

Citation: Han H, Dang Z. Orbital

Blocking Game Near Earth-Moon L Libration Point. Space Sci. Technol. 2023;3:Article 0102. https://doi.

provide insights for future research on orbital games

Demonstration of Autonomous Sampling Techniques in an Icy Moon Terrestrial Analog

J. Bowkett, David Inkyu Kim. +11 authors P. Backes • Published in IEEE Aerospace Conference 4 March 2023 A collection of functional autonomy behaviors to allow unsupervised science sample selection and

collection on Icy Moons such as Europa or Enceladus was demonstrated on the terrestrial analog of Matanuska Glacier, AK, USA, Candidate sample sites are autonomously identified within the workspace, assessed for feasibility of successful collection, and surface material excavated while both preventing and responding to tool faults arising during interaction with the environment. A description of the system and lessons learned from the field application are discussed with respect to how they may impact potential future surface sampling missions to Icy Moons. Collapse

✓ View on IEEE 🔼 doi.org 📕 Save to Library 🛕 Create Alert 😘 Cite

nots to disrup lestial lines [2 contested, and

ne takes place how it is conducted, where orbital blockades should be deployed and how to carry out orbital blockades is substantial practical

Space: Science & Technology

r(s) attempt to

ames (OPEGs)

Global Themes For In-space Technologies

EYES ON EARTH AND BEYOND

- Imaging Earth in various wavelengths to monitor the environment, detect change, and ensure security
- Used by public agencies and private companies
- Orbiters explore the Moon and other planets
- Advanced instruments now collect more data

CONNECTIVITY AND COMMUNICATIONS

- Large groups of satellites, called mega constellations, deliver data services around the world
- Operations of multi-robot architectures

SPACE ROBOTICS IN EARTH ORBIT ("SUSTAINABLE SPACE")

- On-orbit servicing / satellite life extension (OOS)
- Space Situational Awareness (SSA): flyby's, inspections
- Active removal of defunct satellites and upper stages (ADR)

LUNAR AND PLANETARY ROBOTICS

- Enabling sustainable lunar missions by astronauts: scouting for reserves and their exploitation (ISRU)
- Crewed lunar landers
- Robotics in concert with astronauts
- Using XR for teleoperations

Operations Scenario: Limited Autonomy Coupled With Teleoperations via

Semi-au onomous numanoid

robots perform:

- Assembly
- Maintenance
- Scientific tasks

Operated via VR/XR interfaces from:

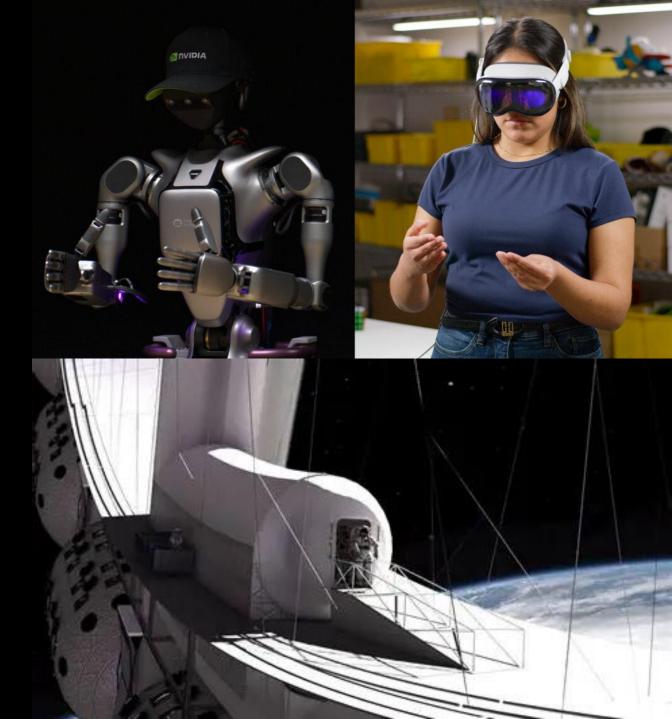
- Earth
- Lunar Gateway

Capabilities
Digital twin interface for immersive control

Local autonomy for:

- Grasp planning
- Navigation on irregular terrain
- Real-time error correction
- Safety in dynamic environments

Free Space: ISAM Scenarios In-space assembly and manufacturing (ISAM)


- Large structure and station assembly
- Reduces astronaut EVA time

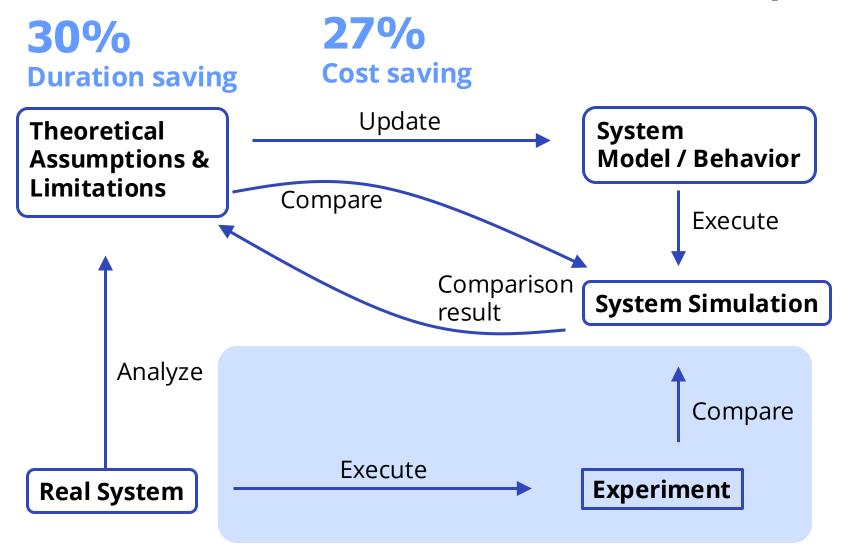
Operated via high-level telecommands through VR/XR

Across all scenarios

Humanoid-astronaut collaboration

- Shared tasks
- Enhanced mission flexibility
- Safer, more efficient operations

Space Projects


PAINS + HOW NVIDIA OMNIVERSE HELPS

PAIN		WITH OMNIVERSE
Incomplete testing due to budget and time limits – mission risk		Full system simulation with environment digital twinning
		Virtual commissioning (VC) and software-in-the-loop (SIL) testing
Quality issues in production and testing		Digital twin of production sites using industrial metaverse and XR tools
Space robotics – hardware and prediction challenges		High fidelity (co-)simulation of robots, sensors, and controls
		Al-enhanced control and training with synthetic data
Managing satellite formations and space debris is complex		Tools for orbit control (active S/C) and encounter prediction
Hard to map and assess usable space resources		Digital twinning of geology, and Al for resource analysis

NVIDIA Omniverse™ Use Cases at SoftServe

Simulation-first: reduce risk, cost, & time

Your developers can train, simulate, and validate advanced robotic systems through virtual robot learning and testing. It happens in physics-based digital representations of environments, prior to deployment.

Digital Twins Spectrum

VALUE

MONITORING

(Seeing)

Data from sensors, immersive data, 3D visualization, descriptive analytics

Status Twin

ANALYZING

(Understanding, Root cause)

Insights (trends and patterns), anomalies, correlation of events

PREDICTING

(Being prepared)

Data-driven models (predictive maintenance, demand forecasting), computer vision

Operational Twin

SoftServe's current focus

PRESCRIBING

(What-if, optimization)

Simulation (physics, math), computational optimization, deep reinforcement learning

Simulation Twin

ADAPTING

(Autonomy, Self-Optimizing)

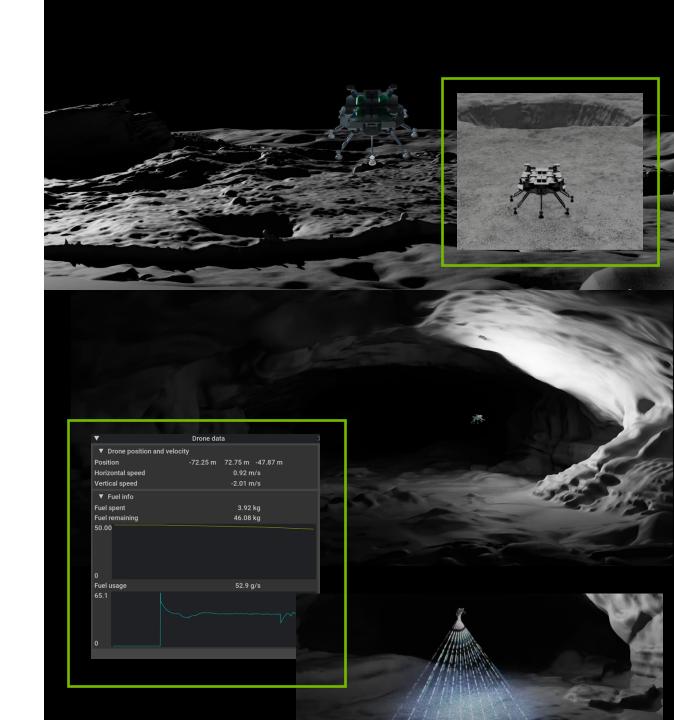
Autonomous control

Autonomy Twin

SoftServe Lunar Drone Simulation

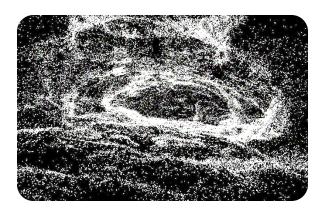
VALUE

- Conceptual design of a thruster-driven lunar drone
- Full-flight simulation of a mission through a lava tube using a skylight as entry/exit
- High-fidelity modeling in Isaac Sim for rapid iteration and validation

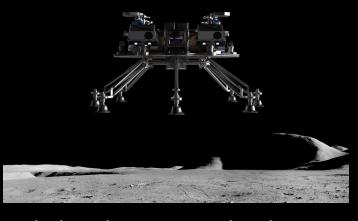

CHALLENGES

Lunar ISRU & SCIENCE:

Thruster-powered drone for flying over the Moon to search for ice GNC system assessment needed for safe, controlled flight Drone also considered for carrying instruments into lunar caves Goal: analyze ice deposits using onboard mass spectrometer

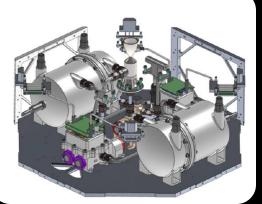

SOLUTION

SoftServe designed a notional vehicle concept along with its guidance system. Using ROS2 and NVIDIA Isaac Sim, the vehicle with its sensors and control system was modeled, and simulations performed of flights over a synthetic lunar landscape created in Blender.



SoftServe Lunar Drone Simulation

- Thruster driven vehicle for controlled flights with option for refueling
- Flight control sensors: two monocular cameras and an IMU
- Linear Kalman filter for sensor fusion and state prediction
- Sensors feeding a visual SLAM algorithm (simultaneous localization and mapping), performing autonomous navigation to reach pre-assigned targets while generating a map via point clouds



Point cloud example from simulated flight through lava tube

Vehicle with two camera heads

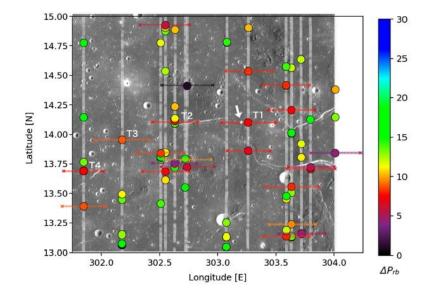
Propulsion system

Modeling of Lunar Lava Tubes

Recreated an example terrain and lava tube model using lunar satellite data and published models on lunar skylights and pits

✓ Skylights imaged from lunar orbit; presence of lava tubes inferred from orbiting ground penetrating radar measurements (e.g., from KAGUYA lunar orbiter)

Potential image of a lunar lava tube skylight with a diameter of 65 m in the Marius Hills area. (a) Panoramic view of the region, showing the designated area for crater counting marked by a solid white polygon. (b) Marius Hills Hole (MHH). (c-f) Magnified images of the MHH, with arrows indicating the direction of sunlight illumination (l) and camera perspective (V).


Lava tubes are an exciting features on the Moon because they could be a "safe haven" (protected from thermal extremes and radiation) for future crewed outposts.

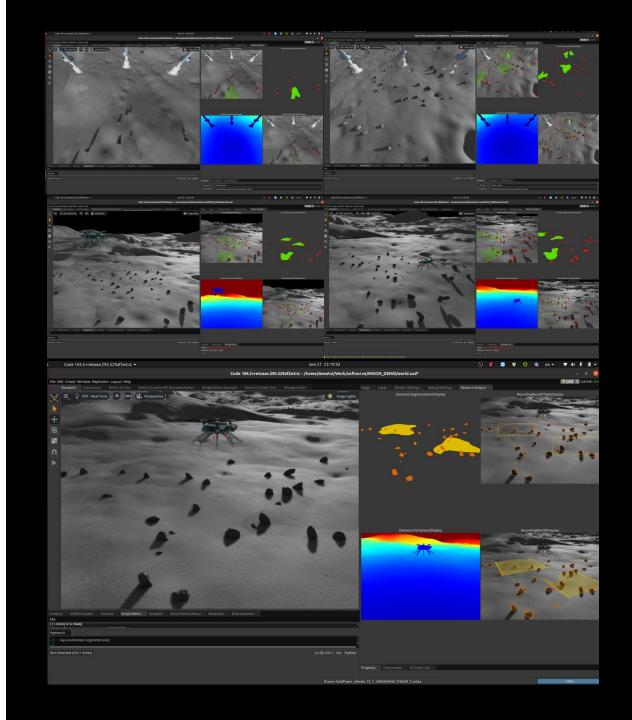
✓ Moreover, some could be harboring ice (easier to access than in polar shaded regions).

Candidate sites of potential underground caverns in the Marius Hills region. The color of the circles represents the radar power difference between the first and second echo peaks (DPrb). The lower the DPrb value, the greater the possibility of the existence of underground lava tubes.

(Qiu et al., 2023)

Modeling Of Synthetic Lunar Terrain: Using NVIDIA Replicator

VALUE


- Increased the quality of the designed drone mapping algorithm
- Enabled synthetic dataset generation for obstacle recognition
- Decreased the time needed for environment randomization

CHALLENGES

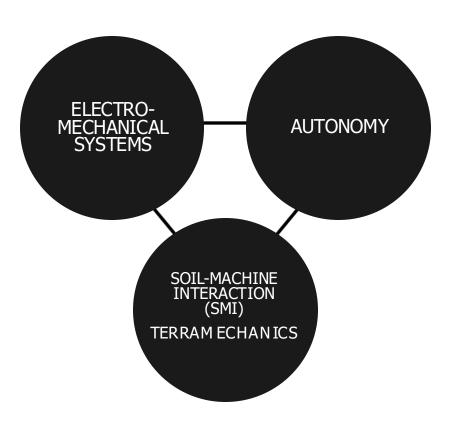
As part of the lunar drone simulation work by SoftServe: Reduce implementation time through automatic world modification

SOLUTION

- Use NVIDIA Replicator and Isaac Sim for environment randomization
 - Drone position
 - Stone quantity, shape, and size
- Test the algorithm in various environments
- Fine-tune the algorithm based on test results
- · Enable obstacles recognition for safe landing

A Glimpse Into The Virtual Mission

soft**serve**


Co-simulation for Lunar Robotics

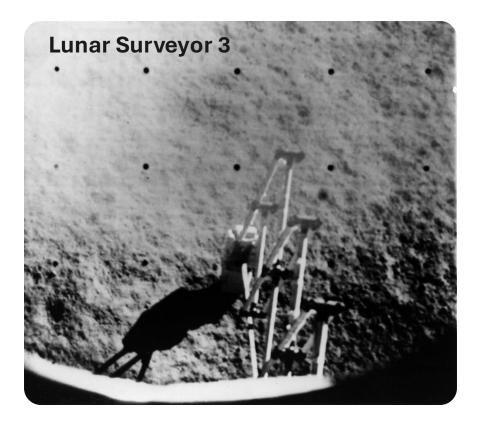
Managing energy use is critical for lunar operations.

SoftServe uses a co-simulation approach to model tool-regolith (terramechanical) interaction and robotic behavior.

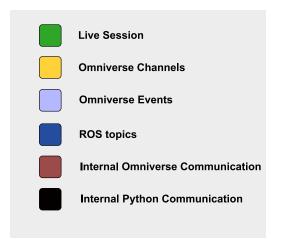
Applications:

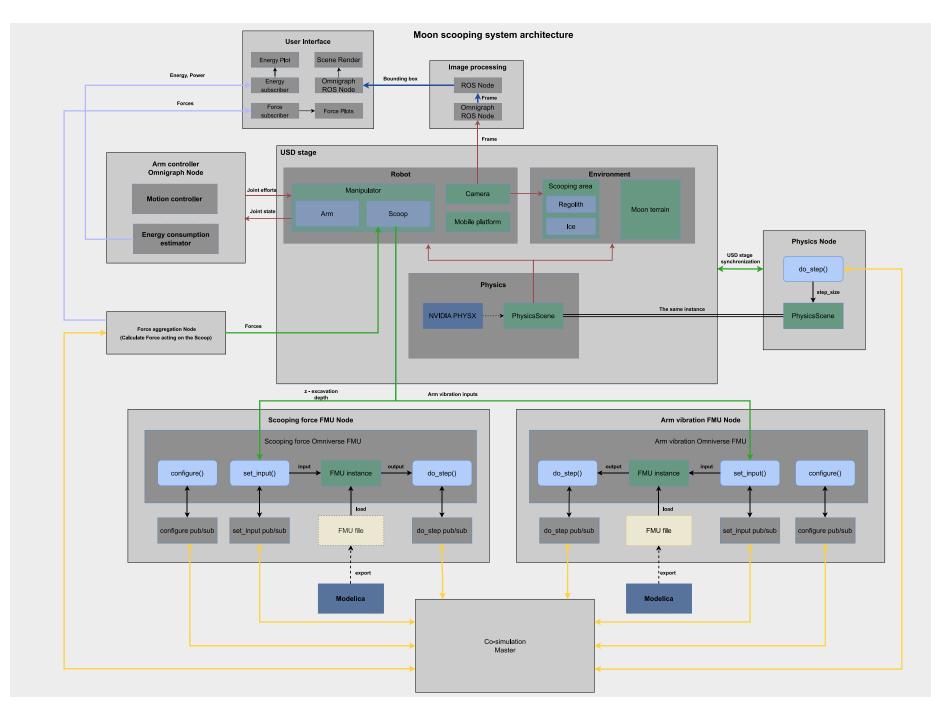
- Landing gear
- Rover mobility systems
- Excavation, sampling, and sample handling

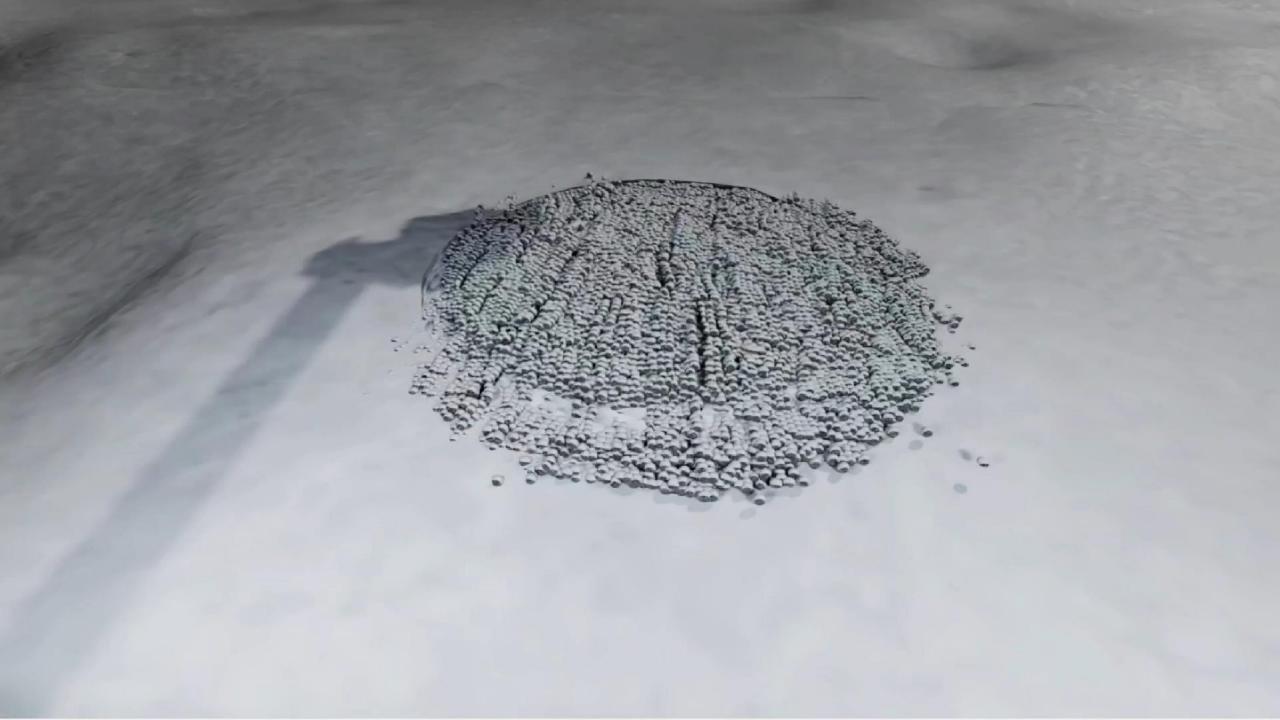
Excavation On The Moon


Challenge

- Excavation is essential for mining resources on the Moon
- So far, only small-scale scientific tests have been done
- Future missions need scalable, efficient solutions
- Lunar gravity must be factored into design




The Need


Advanced simulations to explore concepts and guide design

L-REX Co-simulation Architecture

From Concept To Collaboration With NASA

READ MORE

Companies team up to develop Moon landing and launch pad technology with funding from NASA's STTR 2023 Program

AUSTIN, Texas (Dec. 22, 2023) – <u>SoftServe</u>, a premier IT consulting and digital services provider, today announced plans of joining an international coalition on a NASA-funded project to develop lunar technologies. The project comes after San Antonio-based Astroport Space Technologies won a NASA STTR 2023 Phase II

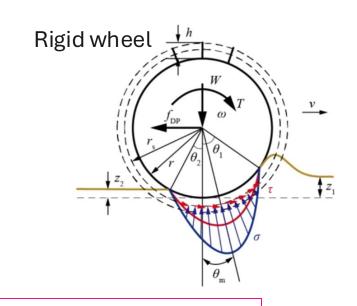
Co-simulation for Ground Vehicles Mobility

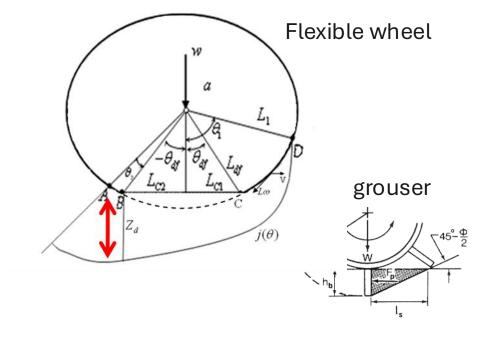
Integrated with NVIDIA Isaac Sim

Semi-Empirical Modeling for Planetary Mobility

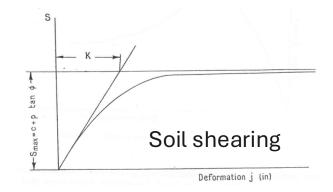
Pioneered by M. G. Bekker

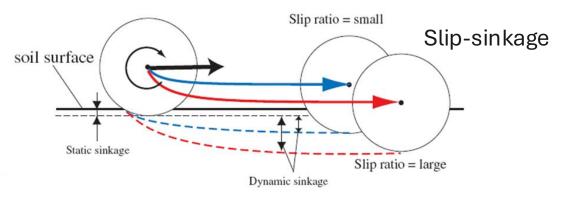
Established in the 1950s

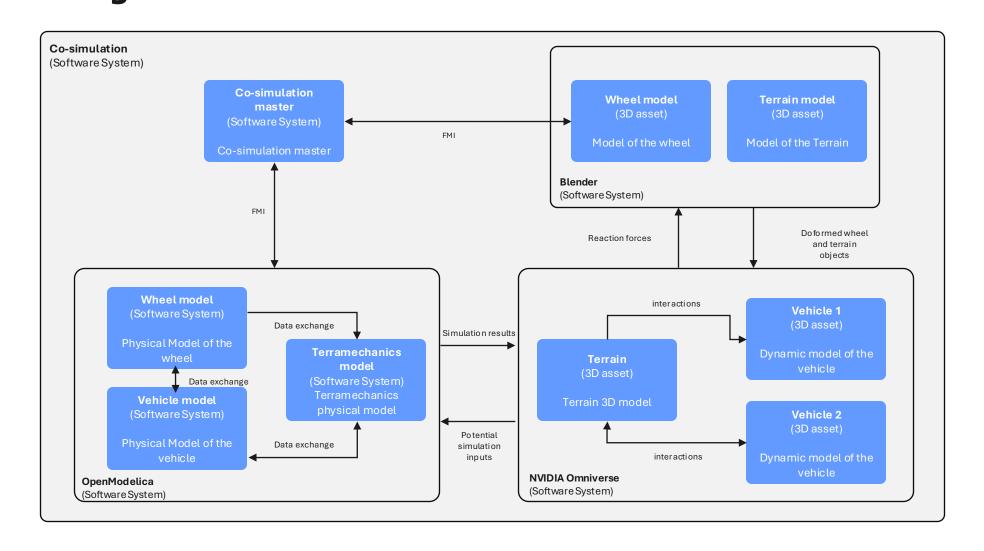

Extensive validation for terrestrial vehicles

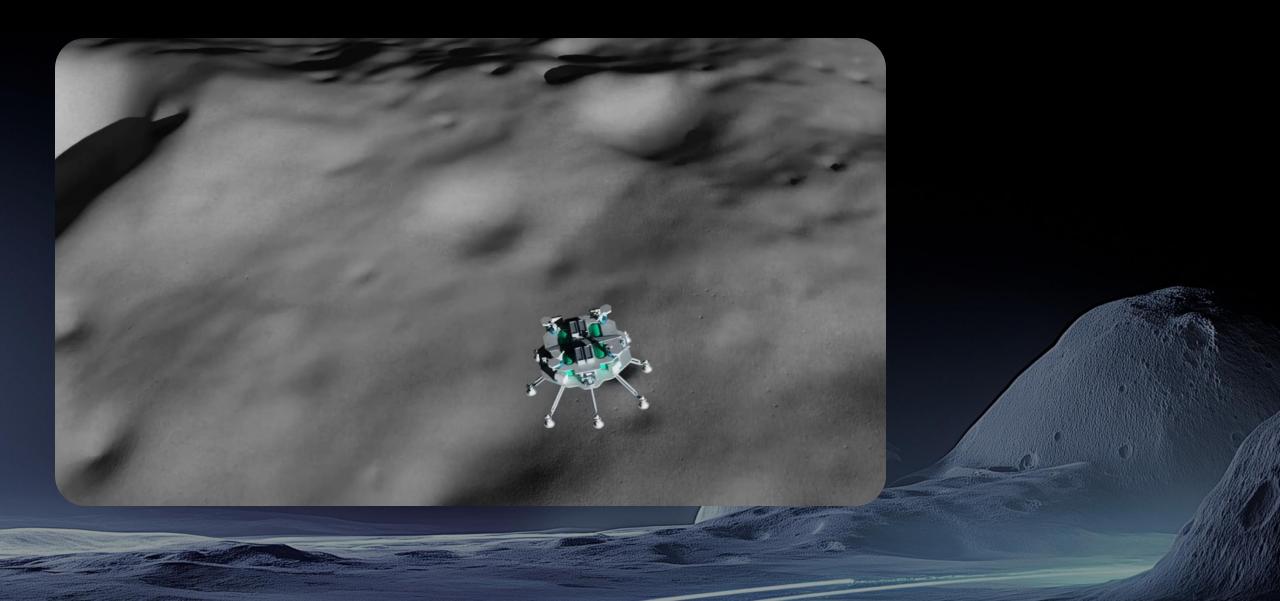

Proven Space Heritage

Lunar Rovers: Apollo LRV, Yutu


Mars Rovers: JPL Mars rovers,


ExoMars, Zhurong

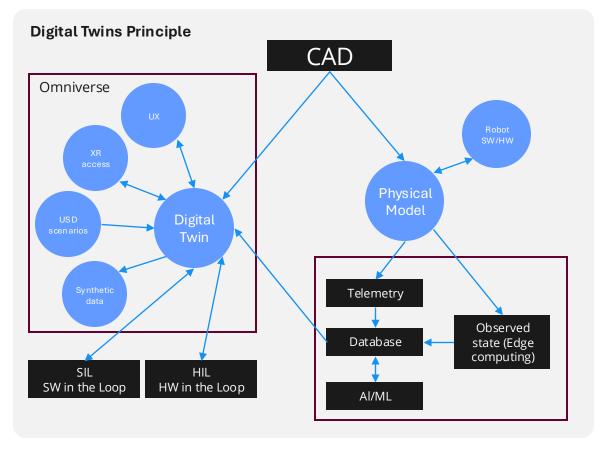



Co-simulation for Ground Vehicles Mobility Integrated with NVIDIA Isaac Sim

Co-simulation For Ground Vehicles Mobility Integrated with NVIDIA Isaac Sim

Terramechanics Simulation Progress Update

Multi-robot On The Moon



Digital Twins For Space Systems

Capabilities

- Simulate full system behavior with environment interaction (digital twinning)
- Model satellite formations, constellations, and clusters
- Include communications links and GNSS interactions (pointing & positioning)
- Perform virtual commissioning (VC) and software-in-the-loop (SIL) testing

Optimal Control of Dynamical Systems

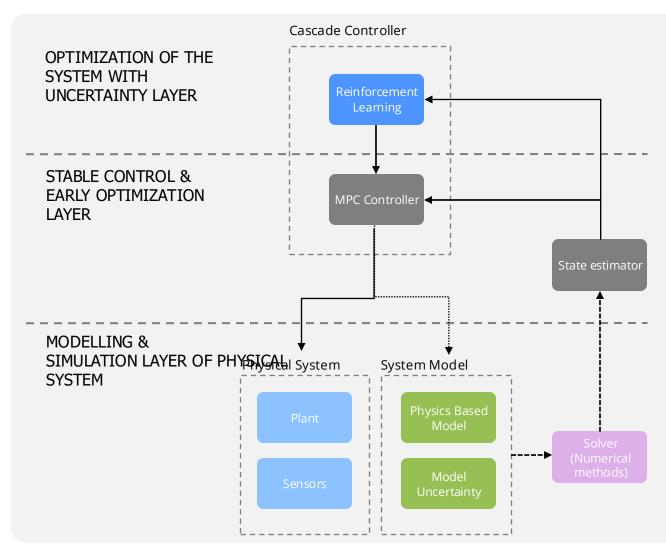
Capabilities

All adapts goals to changing system states and environments Handles uncertainties in real-time operations

Use Cases

Proximity operations: rendezvous, capture, servicing, debris removal Orbit and position control: satellite formations and constellations

Technologies


Digital twins and physics-based simulations for control design

CloudCT Nanosat formation of S4 GmbH (Germany)

Satellite servicing concept (NASA)

SoftServe In Space & In The Lunar Economy

There's a lot happening in space — and the *Space Economy* is upon us

SoftServe's role: "simulation-first" + supporting system design and testing

NVIDIA Isaac Sim enables:

- Space-related simulations
- Digital twinning
- Physics-based modeling

...and we have a lot more on our space agenda!

LET'S TALK!

soft**serve**

THANK YOU!

Lutz Richter

Space Projects Consultant Robotics & Advanced Automation, <u>SoftServe Irich@softserveinc.com</u>

ANY QUESTIONS? LET'S TALK

soft**serve** FOR THE FUTURE

soft**serve**

Backup

Journey from Perception AI to Physical

with SoftServe

partner-orchestrated

Business-led, value-driven operating model to enable scaling

AlexNet

2012

First widely recognized application of deep convolutional networks

Perception

Alech recognition, deep RecSys, medical imaging

Generative

Agtal marketing, content creation

SoftServe Gen Al Solutions Using NVIDIA Al Blueprints

Visual Search & Summarization (VSS)

Agentic AI

Coding assistant, customer service, patient care

Agentic QA Agents

Physical AI

Self-driving cars, general robotics

Cosmos EA

Virtual Factory Integration

SoftServe Warehouse Sim