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Fig. 1: Robotic exploration of Enceladus via direct ocean access, as originally proposed in [9] and [10].
Abstract—Of the places in our solar system that may support

life, Enceladus stands out due to the presence of complex
organic molecules and possible hydrothermal vent activity in
its subsurface ocean, with direct access theorized via fissure
vents at its icy south pole. However, robotic exploration of
the lunar interior requires first negotiating complex, undulatory
surface terrain before transitioning into a vertical descent mode
once inside the fissure system. Such a mission profile demands
advances in multi-modal robotic locomotion which to-date are
yet to be realized. In this work, we take a step towards enabling
this vision by contributing a reinforcement learning controller
capable of robust surface locomotion and vertical mobility with a
snake-like morphology. Simulation experiments provide a proof-
of-concept validation of our method. Our work takes a small
step towards the broader idea of Robotic Exploration 3.0 [51]:
intelligent robots capable of adapting at mission-time, enabling
one-shot exploration of celestial bodies.

I. INTRODUCTION

Enceladus, a moon of Saturn, features a rocky silicate core
in contact with a sub-surface liquid water ocean, encased in
a cryogenic icy crust tens of kilometers thick [39]. A set of
fissures, or tiger stripes, at the south pole vent gaseous plumes
into space, suggesting a continuous path from the surface to
ocean [30] (fig. 1). Combined with known complex organic
molecules in plume samples [15] and theorized hydrothermal
vent activity [31], Enceladus ranks highly on the list of places
within reach that may support life beyond Earth [48] [8].

These factors motivate strong interest in robotic exploration
[41] [71] [1] [42], particularly via direct ocean access [9].
Here, a robot must (1) traverse the undulating surface terrain
from a delivery lander to fissure opening, (2) vertically de-
scend the fissure while fighting turbulent, possibly supersonic
[46], plume flow and (3) swim in the subsurface ocean.

Each phase requires fundamentally different locomotion
modes (surface, vertical, and oceanic) making conventional
morphologies — such as rovers, drones, or quadrupeds —
unsuitable for the complete mission profile.

Several novel robotic mission concepts have been proposed
in response [50] [67], most recently the Exo-Biology Extant
Life Surveyor [10] [69]. EELS is a 4.4m, 100kg snake-like
robot under development at the NASA Jet Propulsion Labora-
tory. With 46 articulated degrees of freedom, EELS is capable
of potentially infinite gaits for traversing the surface, vertical,
and oceanic biomes of Enceladus. Considerable progress has
been made towards building specialized controllers for each
mode, albeit in isolation. Surface locomotion was demon-
strated through a variety of shape-based gaits [66] [47] [17],
vertical mobility via screw propulsion [53], and swimming,
while not yet demonstrated on EELS, has been studied on
other snake-like platforms [28] [23].

However, these control methodologies are disjoint, creat-
ing discontinuities at the surface-vent and vent-ocean mode
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transitions where the robot must seamlessly adapt between
different locomotion strategies. To date, entering vertical mo-
bility requires ’placing’ EELS in a crevasse with the correct
pose, assisted by a wire harness. As highlighted during the
2023 EELS Athabasca field test, ”more work is needed to
integrate surface and vertical components into a single robotic
system capable of safely executing a full mission from lander
to subglacial ocean” [69, pg 8].

To address this challenge, and inspired by prior work [21],
we propose a hierarchical learning-based control architec-
ture. At a low level, reinforcement learning is used to train
specialized locomotion policies for both surface and vertical
mobility tasks by converting waypoints into commanded joint
deflections based on proprioceptive observations. A high-level
controller would then learn waypoint placement and which
locomotion skill to employ1 As such, this work offers the
following contributions:

• An RL framework to produce robust serpentoid surface
and vertical mobility over undulating terrain and through
fissure-like gaps.

• Simulation experiments that demonstrate a surface-to-
vertical mission profile from delivery lander, over terrain,
down a fissure-vent opening, and into the lunar interior.

More broadly, this work builds towards the wider, paradigm-
shifting idea of Robotic Exploration 3.0 (RE-3.0): intelligent
robots capable of adapting at mission-time, enabling one-
shot exploration of celestial bodies without requiring many
expeditionary campaigns [51]. In our case, there are n = 3
things we desire our robot to do, but we don’t want to send
3 separate robots [27]. Instead, a hyper redundant snake-
like morphology, coupled with learnable autonomy, emerges
as a viable solution to realizing RE-3.0 by learning surface
and vertical locomotion with a single platform and control
architecture.

II. RELATED WORKS

Learning robust surface and vertical mobility with a sin-
gle platform has been a long-standing challenge for legged
and limbless robots, especially in confined environments that
limit actuation range and require precise contact control. To
gauge progress in each dimension, fig. 2 informally compares
locomotion distance records across prior surface and vertical
robotics literature, colored by morphology. We believe such
a comparison is useful because it shows perspective when
comparing different control architectures relative to traversal
distance requirements for direct ocean access: Enceladus’s
fissures are estimated to reach depths of 6km [49], while
propulsive landing systems, we theorize, could provide target-
ing accuracy within tens of kilometers. Enabling autonomous
robotic navigation to meet this spatial envelope remains largely
unstudied.

The confined environment within Enceladus’s vent system
is theorized to constrict towards a narrow throat [32], making

1As this is ongoing work, the high-level controller remains unimplemented
and is represented in by a human operator for now.

a snake-like morphology with small cross-sectional area an
appealing choice.

Surface Mobility: At surface level over short spatial dis-
tances (< 100m), serpentoid locomotion typically employs
”shape-based” gaits such as open-loop sidewinding [77] or
lateral undulation [11]. Here, sinusoidal curves propagate
down the backbone to produce forward motion. Common
approaches rely on either expertly designed gait equations
[52] or parametric approximations to fit the snake body
against a reference shape or curve [20] [19] [76]. However,
as predominantly open-loop approaches, adaptation is limited,
constraining deployment to near-planar terrain.
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Fig. 2: Informal comparison of vertical and surface traversal
distance records across prior robotics literature. The estimated
depth of Enceladus’s fissures is ≈ 6km [49], we theorize
a propulsive lander would have an error margin ≈ 10km.
*Asterisk denotes simulation only, no hardware validation.

Snake robot hyper-redundancy also introduces many degrees
of freedom (DOFs), creating high-dimensional action spaces.
Prior works have addressed this through dimensionality-
reduction techniques: backbone curves approximate the robot’s
complex body shape using a parameterized spline [20]; multi-
agent RL was proposed to improve scalability by treating
each mechanical module as an independent agent [75]; and
central pattern generators (CPGs) encode gaits using com-
pact frequency, phase shift, and amplitude parameter sets
[26, 25, 72]. Augmentation with RL to automatically tune
CPG parameters has also been explored [36, 54]. Despite
such enhancements, rigidity to a geometric reference makes
these techniques fragile when adapting to mobility-stressing
terrains such as steep inclinations or undulating surfaces. In
these settings, dynamic gait adjustments that conform with
local surface curvature become critical.

One promising technique to bridge this gap are end-to-end
learning-based approaches, which train a neural network to
map pixels [6], tactile feedback [37], and or proprioceptive
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state [38] directly to joint positions or velocity commands.
However, in all these works, as well as [5] [61], the environ-
ment has remained a flat plane. To the best of our knowledge,
learning end-to-end shape-based gaits over challenging undu-
lating surfaces has not yet been explored.

Vertical Mobility: Over short spatial distances (< 10m),
snake robots exhibit remarkable vertical mobility for climbing
trees [35] [33], pipes [65], gaps [59], ladders [64], steps [22],
and steep inclinations [18]. Of these, internal pipe and gap
crawling are most related to our work because they emphasize
maintaining precise contact wrenches within narrow friction
cones inside a confined environment while making and break-
ing contact.

Pipe climbing has been explored via LSTM-driven sine
wave gaits [60] and arboreal concertina gaits [12], both incor-
porating geometric formalisms based on watching biological
snakes in the wild. To climb walls, a lamprey-inspired gait
used microspine anchoring to achieve near-vertical mobility
[68]. However, relying on a single anchor is minimally redun-
dant and, on Enceladus, potentially challenging to mount on
a cryogenic ice wall.

To our knowledge, no prior work—simulated or
real—demonstrates surface and vertical mobility capable
of crossing complex terrain and descending un-bordered
fissure-like spaces (ie, only two surfaces to push against).
Direct ocean access requires traversing such spaces, in
addition to translating in any lateral direction once inside the
fissure.

Insights from Quadrupeds: Although the cross-sectional
area of a quadruped is generally too large for Enceladus’s
fissures, recent innovations in RL for agile quadrupedal park-
our have proved highly successful, offering valuable cross-
domain insights. Many prior works train policies capable of
surface mobility tasks for trotting, running, fall recovery [74],
manipulation [43], often over challenging [34] or deformable
[14] terrain, and even inside confined spaces [73] [45]; Vertical
mobility is also prevalent, often climbing boxes [7], stairs [13],
ladders [70], or inclined surfaces. To achieve such feats, a
common theme is to first learn specialized policies for each
low-level locomotion skill which are then either dynamically
selected by a higher-level planner at deployment time [21], or,
distilled into a single policy with additional fine-tuning during
post-training [56].

Of these methods, we draw inspiration from the hierarchi-
cal approach, delegating low-level locomotion to specialized
policies and relying on a high-level navigation module - an
idea initially proposed in [21]. This approach forms the basis
of our method, explained below.

III. METHOD

Our goal is to endow a snake robot with locomotion capa-
bilities to traverse undulating surface terrain, reach and enter
a fissure opening, initiate a controlled descent between two
opposing vertical faces, and arrive at a spatial goal in minimal
time. Throughout the descent, contact must be maintained with
fissure walls to avoid falling, and for completeness, must also

learn to climb. At surface level, Enceladus’s surface terrain
features deep undulations that can entrap the snake robot,
thereby necessitating realtime gait adaptability to escape traps.

To accomplish this, we employ a hierarchical reinforcement
learning (RL) strategy inspired by prior work [21]. Two low-
level locomotion policies are trained to first master surface
and vertical mobility independently, both capable of tracking
towards any arbitrary goal location in their respective planes
(fig. 3). Partitioning locomotion into task-specific policies like
this considerably simplifies problem complexity compared to
learning both simultaneously. At deployment time, a high-
level controller (for now represented by a human operator) is
responsible for goal placement and for triggering the surface-
vertical mode transition upon reaching the fissure entrance2.

Both low-level surface and vertical locomotion problems
have shape-based gait solution policies which can be found
through framing as a Markov Decision Processes [63]. During
training, the agent starts from an initializing distribution ρ
(Table V and VI). At each timestep, the agent receives state
st ∈ S and samples an action at ∈ A from a policy,
either πsurface or vertical

θ (a|st). Upon action execution, the agent
transitions to a new state st+1 and receives reward rt+1 ∈ R.
Off-the-shelf Proximal Policy Optimization from RSL [58]
is used to find parameters θ that maximize the expected
discounted sum of future reward. A multilayer perceptron
with [512, 256, 128] hidden units over three layers and elu
activations is used to approximate the optimal π∗.

The same MDP observation and reward spaces are used
for training surface and vertical mobility policies. However,
we introduce the notion of principle axes H depending on
the task: for surface mobility, H = {x, y} and for vertical,
H = {x, z}. All policies are trained in Genesis-World
[4], a GPU-accelerated robotics simulator.

Observations: We define the observation vector o ∈ R63

of a low-level policy as:

ot =
[
dgoal, gproj, vcom, h, hdot, dgoal, q, q̇, at−1

]⊤
(1)

TABLE I: Notation

Symbol Description

pgoal World goal position specified by navigation module.
pcom World snake center of mass
dgoal Vector from robot center-of-mass to goal (normed, in H).
gproj Gravity vector in robot’s tail-link frame.
vcom Linear velocity of center of mass in the world frame.
h Heading vector of robot, normed, in principle plane H.
hdot Cosine similarity between heading h and dgoal

dgoal Distance between center of mass pcom and goal pgoal.
q, q̇, τ Joint positions, velocities, torques.
at−1 Previous action taken by the policy.

Importantly, observations exclusively utilize proprioceptive
features, nothing is explicitly known about the geometry of
surrounding terrain. Surprisingly, we find it’s still possible for
each policy to adapt its gait to the local environmental purely
by knowing joint positions and the previous action. For ex-
ample, at deployment time, reactive behavior can be observed

2In future work, the high-level human ’controller’ could be replaced by a
specialized task and mission planner similar to [24].
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Fig. 3: Methodology Overview: Learning surface and vertical snake-robot locomotion. (A) Navigation module (human operator)
provides high-level waypoint and mode switching commands - future work aims to make this autonomous. (B) Low-level
locomotion module selects task based on commanded mode and converts desired goal into joint actuation. (C) Surface task
trained to locomote over a flat plane before deployment on undulating terrain and obstacles. (D) Vertical task learns to traverse
a simplified vent fissure formed between two opposing faces via a chimney gait and learned contact control.

where, upon getting stuck in a deep surface undulation, the
agent is able make subtle gait adjustments in realtime to escape
the hole and continue on its way.

Reward: Both surface and vertical tasks utilize the follow-
ing reward function eq. (5). A progress term [62] incentivizes
moving the agent’s center of mass pcom to the goal pgoal

in minimal time. Energy rewards minimize the magnitude of
actions at, ensuring smoothness and efficiency. Components
are linearly scaled by α1 = 1, α2 = 0.001, obtained by manual
tuning, and ∆t the integration timestep.

vt =
∥pgoal − pcom∥2

∆t
(2)

rprogress = vt−1 − vt (3)

renergy = −∥at∥22 (4)
rt = α1rprogress + α2renergy (5)

Note this simplified design over the reward function in our
previous work [47], dispensing with safety and heading com-
ponents and featuring two terms rather than four. In hindsight,
penalizing heading likely complicated learning by prohibiting
agents from freely moving in a given direction with any ori-
entation, an otherwise defining characteristic of robust shape-
based gaits.

Virtual Chassis: Similar to our prior work [47], we build
upon the established virtual chassis [55] for snake robots as
our primary reference frame. However, a subtle but significant
modification is made by ensuring the z up-axis is gravity
aligned, finding this increases robustness in the presence of
rolling gaits. This change also ensures the y-axis remains
parallel to the ground, which forms an intuitive reference for
the snake’s orientation heading h in eq. (1).

Terminal Conditions: Agents are terminated after n
timesteps. To avoid artificially correlated states during training,
the timestep index of each vectorized environment is random-
ized before training. If an agent reaches a goal before episode
termination, a new goal is uniformly sampled. See appendix
parameters for randomization details.

Terrain Generator: To facilitate training and deployment
in simulation, a parameterized terrain and fissure model was
developed. The geometry is based upon [30], modelling tiger
stripes as tidally-flexed vertical slots that puncture the ice shell.
Due to Enceladus’s 33-hour eccentric orbit around Saturn,
tidal forces are imparted on the crust, causing compression
and expansion at the vent interface. The width of our fissure
is therefore variable. To further increase difficulty, layered
perlin noise was imposed, creating surface undulations [16].
However, for vertical mobility, we found it necessary to



IEEE/SMC 2nd Space Robotics Workshop Track-B (Non Archival)

Fig. 4: Surface Mobility: Evaluation of surface mobility policy over randomly-generated perlin noise terrain. Starting from
green flag, the agent (A) encounters a steep slope and adjusts gait from rectilinear to sidewinding, improving contract traction.
(B) Performs a direction change on an off-camber slope after reaching first sub-goal. (C) Gets stuck in a pit. After a period of
re-adjustment, policy switches gate to escape. (D) Enters valley, traverses off-planar surface and climbs out to reach the final
goal. See Video S1 in table II for the full rollout.

increase the static and coupling terrain friction coefficient to
5 and 2 respectively. These values are far greater than the
anticipated low-friction icy fissure walls of Enceladus and
constitute a key limiting assumption.

IV. RESULTS & DISCUSSION

Our method is evaluated in simulation experiments that
evaluate robustness of our learned surface and vertical mobility
policies.

Surface Mobility: Figure 4 demonstrates mobility over
randomized perlin terrain featuring steep undulations. Evi-
dently, the policy can robustly translate towards specified
sub-goals (white flags) while adapting its gait relative to
proprioceptive observations. For example, at point A, a steep
inclination is reached, prompting an apparent gait transition
from sidewinding to rectilinear. We speculate this increases
contact patch area and improves traction, a behavior also
observed in biological snakes [40]. Similar adaptability was
shown at point C, where upon briefly getting stuck in a pit, the
policy appears to reconfigure itself to climb out and continue
on its way. Video S1 in Table II shows full the rollout.

Note this learned surface mobility policy is blind, with no
mapping capabilities to provide knowledge of surrounding
terrain. The chosen gait must therefore be reasoned using
proprioceptive feedback alone (eq. (1)). Despite this, robust
surface mobility is still possible, reflecting a broader trend

amongst other blind locomotion literature [34]. This highlights
the promising potential of a hyper-redundant snake morphol-
ogy coupled with learned autonomy for space exploration.

Surface-to-Vertical: Figure 5 demonstrates deployment on
a simplified surface-to-vertical mobility task. After surface
deployment (presumably from a delivery lander) the agent
traverses undulating terrain, featuring inclinations of up to
≈ 20 degrees, while tracking towards the vent interface. After
reaching the vent, the agent passively slides into the fissure,
catches itself, and adopts a ’chimney’ climbing gait, enabling
a controlled descent towards the fissure floor 4m below. By
passive we mean the joint effort is zero.

Note, the passive slide into the fissure is not learned, but
rather triggered by the navigation module and made easier
by the smooth chamfered edges of the surface-vent opening.
Further, the vent-opening itself features off-distribution terrain.
During testing, we found the policy can occasionally ’fall’ into
a novel state and stall. Successfully entering the fissure also
depends on the human operator’s skill.

After clearing the vent opening and initiating a descent,
the vertical policy systematically makes and breaks contact
by pushing against the fissure walls in a rolling motion to
maintain control. In prior works, this kind of coordinated
behavior has, generally, only been possible through expertly
designed shape-based gaits. Here, climbing behavior is emer-
gent - we did not explicitly incentivize attributes such as



IEEE/SMC 2nd Space Robotics Workshop Track-B (Non Archival)

Fig. 5: Surface-to-Vertical Mobility: Deployment of our method on a surface and vertical mobility task. (A) The agent traverses
over undulating surface terrain, featuring inclinations of up to ≈ 20 degrees, while tracking towards the vent interface. (B)
Agent passively slides into the vent (joint effort zero), catches itself and (C) adopts a ’chimney’ climbing gait, enabling a
controlled descent towards the fissure floor 4m below. Note, the surface-vent transition features off-distribution terrain which
occasionally stalls our agent if an unseen state is encountered at deployment time.
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Fig. 6: Policy Robustness: Success rate of locomotion policy subject to increasing environment difficulty across three key
features: (A) terrain perlin noise amplitude, (B) ramp angle, and (C) fissure gap width. Each data-point contains 64 rollouts.

sinusoidal motion or contact control (eq. (5)). Moreover, while
this figure only shows a descent, our method is also capable of
translating towards any point within the vertical fissure plane,
including climbing and lateral translations (See Video S4 in
Table II).

Figure 7 compares the distribution of joint angles during
these surface and vertical mobility rollouts shown in fig. 5.
Interestingly, the surface joint distribution (left) makes full use
of the actuation range up to and including the revolute axis
hard-stops at ±45◦. The distribution of joint angles is also
symmetric, reflecting the symmetry, on average, of dominantly
sinusoidal surface mobility gaits such as sidewinding and
rectilinear motion. In contrast, the vertical mobility joint
distribution (right) is asymmetric, reflecting the banana-like
chimney climbing gait observed in fig. 5.

Fig. 7: (Joint Distribution): Average distribution of joint
positions during surface (left) and vertical (right) mobility,
for the rollout shown in fig. 5. Actuator hardstops marked
by dashed lines.

Robustness: Policy robustness was evaluated by varying
environment properties and measuring the resultant success
percentage when traversing from a start to goal point, repeated
over 64 rollouts. Terrain undulation difficulty was controlled
by increasing perlin noise amplitude from 0m to 0.9m, inclined
surfaces by increasing the gradient of a linear ramp obstacle
up to 45◦, and vertical mobility by varying the width of the
fissure gap by −2cm and +5cm either side of that used during
training (fig. 6).

In simulation, the surface policy is robust to undulations up
to 0.6m in amplitude, before success rate falls of significantly.
Similarly, inclinations up to ≈ 32◦ can be traversed before

performance degrades. Both characteristics are a marked im-
provement over our prior work [47], which could only manage
a flat plane. However, the vertical policy appears to be very
sensitive to fissure gap width. The policy is unable to complete
even a single successful rollout for width variations beyond
±1cm, suggestive of over-fitting (fig. 6 green).

Gait Analysis: Gait trajectories produced by our surface
mobility policy exhibit the same turning mechanisms used
by sidewinder rattlesnakes, previously observed in [3]. In
biological snakes, differential turns are long, shallow course
corrections that can continue over many gait cycles while
reversal turns are sudden, sharp in nature for rapid direction
changes [3].

Fig. 8: Gait Analysis: Shape-based gait tracking waypoints
in 0-1-2-3-0 sequence, reminiscent of sidewinder rattlesnake
locomotion through differential and reversal turns.

Our policy exhibits both differential turning after passing
waypoint 3, and a sharp reversal turn while approaching and
passing point 1 (fig. 8). In our experiments, the internal policy
mechanism that triggers which turning technique to be used
appears subject to the snakes heading h in eq. (1) and the
relative position of the goal.
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V. CONCLUSIONS & FUTURE WORK

Motivated by Enceladus direct ocean access [9], we de-
veloped an RL controller capable of surface locomotion over
undulating terrain (fig. 4) and vertical mobility in fissure-like
environments (fig. 5). Robustness analysis (fig. 6) suggests our
controller can handle variations in simulated terrain geometry
and surface inclinations, but is sensitive to small (±1cm)
changes in fissure width beyond those seen in training. We
also observed an interesting parallel between the turning
mechanism of real sidewinder desert snakes and our surface
mobility policy (fig. 8).

However, to achieve the vertical mobility evident in fig. 5,
several simplifications must be noted. First, the static and
coupling friction coefficients of the fissure surfaces were
increased to 5 and 2 respectively. This is unrealistically beyond
the low-friction icy surfaces expected on Enceladus. Second,
the navigation module, responsible for placing sub-goals at
the vent entrance and fissure floor, and for triggering the
low-level mode transition, was managed by a skilled human
operator. Lastly, the entrance section of the fissure features
off-distribution terrain not seen during training, occasionally
stalling the vertical mobility policy if an unseen state is
encountered at deployment time.

Future work could investigate further increasing vertical
mobility robustness subject to increased fissure widths and
reduced friction coefficients. Additional work is needed to
replace our human navigation module with an autonomous
equivalent, perhaps using the task and motion planner pro-
posed in [69]. Lastly, quantifying the sim-to-real gap and
deploying of our method on real hardware is an intriguing
next step.

More broadly, we believe developing learning-based control
systems for space robots will help realize the vision of Robotic
Exploration 3.0 [51]. As humanity turns its gaze to the outer-
solar system, ever-increasing communication delays demand
ever-increasing levels of autonomy. This shifts mission-critical
decision making from human operators on Earth to on-board
the robotic explorers themselves. Learnable autonomy for
robotic exploration opens the door to celestial destinations
previously outside of our reach, expanding the frontier of
human knowledge to new horizons in our solar system and
beyond.

VI. APPENDIX

A. Supplementary Videos

The following supplementary videos are provided to support
our results:

Behavior Source

S1: Surface mobility (as in fig. 4) YouTube
S2: Surface-to-vertical (as in fig. 5) YouTube
S3: Vertical Mobility (timelapse) YouTube
S4: Vertical Mobility (closeup) YouTube

TABLE II: Supplementary Videos

B. Hyperparameters

Parameter Value

Number of modules 18
Module Mass (kg) 10
Module Dimensions (m) 0.0325 x 0.04 x 0.04
Module Ixx 0.0133
Module Iyy 0.0175
Module Izz 0.0175
Revolute Axes [0, 0, 1] if even, else [0,1,0]
Joint Force Range (N) [−100, 100]
Stiffness Kp 300
Damping Kv 10

TABLE III: Snake robot configuration

Parameter Value

Simulator Name genesis-world
Release Version v0.2.1
Integration Step (s) 0.005
Integration Number of substeps 2
Gravity (ms-2) [0,0,-9.81]
Constraint Solver Newton

TABLE IV: Simulator configuration

Parameter Value

Roll U(−π, π)
Pitch U(0, 0)
Yaw U(−π, π)
Initial Joint Positions (rad) U(0, 0)
Initial Joint Velocities (rads-1) U(0, 0)
Goal g ∈ R2 gx ∼ U(−5, 5), gy ∼ U(−5, 5)
OnGoalReached(...) Wait for episode termination
Training Scene Flat Plane

TABLE V: Initial State Distribution (surface mobility)

Parameter Value

Roll U(−π, π)
Pitch U(0, 0)
Yaw U(0, 0)
Initial Joint Positions (rad) U(0, 0)
Initial Joint Velocities (rads-1) U(0, 0)
Goal g ∈ R2 gx ∼ U(−2, 2), gz ∼ U(1, 4)
OnGoalReached(...) Sample new goal
Training Scene Vertically oriented, opposing

planes 7cm apart

TABLE VI: Initial State Distribution (vertical mobility)
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