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Abstract—Robust autonomy in deep space science mission
operations is essential where communication delays prevent real-
time ground control from addressing challenges of environmental
uncertainty. This is problematic for astrobiological missions,
which must navigate strict contamination constraints while coor-
dinating multi-instrument measurements to interpret transient,
time-sensitive biosignatures. To address these challenges, we
present an offline autonomy framework that performs adaptive,
resource-aware sequencing of scientific instruments under uncer-
tainty. It integrates a Bayesian network, which probabilistically
models the likelihood of observing different biotic signatures from
a sample, with a partially observable Markov decision process
(POMDP) to produce adaptive instrument sequences. As a case
study, we apply our methodology to the Enceladus Orbilander’s
proposed Life Detection Suite (LDS) of science instruments. We
demonstrate how to design Bayesian networks that accurately
model the likelihood of detecting biological signatures in collected
samples and display how POMDP reward function tuning can
be used to optimize competing objectives such as reducing
sample state uncertainty and maximizing detection sensitivity.
Our method’s performance is evaluated against the recorded
Enceladus Orbilander Concept of Operations (ConOps) for
binary classifier accuracy and efficiency. These results establish
our method as a significant step toward realizing robust deep
space autonomy.

I. INTRODUCTION

Scientific exploration in extreme environments—such as
planetary surfaces, subsurface oceans, or deep space—
demands systems capable of operating reliably under harsh
and uncertain conditions. Spacecraft may experience power
loss, communication blackouts, component failures, and other
off-nominal events inhibiting mission success. To mitigate
these risks, operators have traditionally opted for conservative
approaches to manage spacecraft operations, with persistent
human-in-the-loop monitoring or use of fixed operation sched-
ules. However, this practice is growing increasingly unsus-
tainable as upcoming astrobiology deep space missions such
as NASA’s Europa Clipper [1] and ESA’s JUICE [2] face
over hour-long communication delays and blackouts [3]. Al-
though some biosignatures, like amino acids, can have delayed
analysis as they remain stable in extreme environments, cell
membranes can degrade through cell lysis within hours to days
once sampled [4], [S]. Testing delays exceeding this window
could compromise microscopy and lead to false negatives with
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degraded samples. This challenge stresses the need for au-
tonomous systems capable of making timely, reliable decisions
onboard to maximize science return.

Advances in onboard computing and scientific instrumenta-
tion have opened new opportunities to incorporate autonomy
into science operations. Researchers have already demon-
strated that autonomy can improve efficiency in real-time data
processing, navigation, trajectory planning, and sampling [6],
as seen with the Perseverance rover’s autonomous navigation
and target selection on Mars [7] and the Deep-space Au-
tonomous Robotic Explorer’s onboard trajectory optimization
for asteroid reconnaissance [8]]. However, its use in high-stakes
missions such as astrobiological discovery remains limited,
as the cost of false positives, contamination, or sample loss
has been unacceptably high. Enabling adoption of advanced
autonomy in these contexts requires efficient yet verifiable and
transparent techniques. By extensively validating precomputed
autonomous solutions prior to deployment, mission operators
can gain trust in system behavior and rely on its ability to
consistently meet mission requirements.

To address these challenges, we propose an offline policy
generation framework that allows for pre-launch verification
while optimizing science return. We model the instrument
operation problem as a partially observable Markov decision
process (POMDP), which captures the uncertainty and se-
quential nature of decision-making in deep space missions. To
efficiently represent the complex and correlated sensor obser-
vations, we use a Bayesian network to define the observation
function. This approach encodes probability distributions over
sample characteristics and incorporates expert understanding
of biosignatures, making the observation space computation-
ally tractable. Our methodology also offers a principled,
quantitative means to model and prioritize scientific objectives,
reducing ambiguity. We then solve the resulting POMDP using
an offline solver, which precomputes an optimal policy that can
be verified thoroughly before onboard, real-time deployment.
We apply this approach to the Enceladus Orbilander mission
concept, automating its life detection instrument suite. To
evaluate our method, we compare its performance against
the existing Orbilander concept of operations, using metrics
such as life detection false positive rates, false negative rates,
and operational efficiency. Our results demonstrate significant
improvements over this baseline.

II. RELATED WORK

A. Autonomy in Space

Deep space missions have successfully deployed autonomy
in spacecraft operations in the past 20 years, primarily in
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the context of station keeping and collision avoidance. In
1999, NASA’s Deep Space 1 (DS1) mission marked the first
demonstration of autonomous image-based localization, fault
diagnosis, and system management during a flyby of asteroid
9969 Braille and comet Borrelly [9]. Dragonfly and Europa
Clipper, currently the two most high-profile and advanced
astrobiology missions, navigate semi-autonomously. Both mis-
sions also employ autonomy to assist with instrument data pro-
cessing and fault detection for mission operations [10], [[L1].

Autonomy frameworks to optimize science return have
also been developed for the Europa Lander mission, which
would face similar communication delays and engineering
challenges to the Enceladus Orbilander. Wagner et al. designed
a hierarchical utility model for the Europa Lander to maximize
science return [12]]. However, this specific architecture is
unable to generalize to unforeseen events such as an actuator
fault, as the utility of each measurement and action must
be hard-coded into the hierarchical model. Techniques like
reinforcement learning can overcome this with a sufficiently
descriptive reward function.

B. Bayesian Networks and POMDPs

Science planning in astrobiology missions requires reason-
ing under uncertainty, where many interdependent variables
must be assessed and acted on with limited information.
Bayesian networks, a type of probabilistic graphical model,
are well-suited to quantify this uncertainty through the graph’s
compact encoding of conditional dependencies between vari-
ables. These networks have been widely applied in the context
of systems health monitoring, from chemical process fault
detection to coastal erosion prediction [13], [14]. Bayesian
networks are especially fitting for astrobiological life detec-
tion, which involves reasoning over the presence or absence of
complex biosignatures. For example, environmental pH may
alter the likelihood of observing certain biosignatures while
not affecting others.

POMDPs are a type of mathematical framework used in
sequential decision-making under uncertainty, where planning
is needed despite incomplete information. POMDPs are often
used in model-based reinforcement learning problems like
autonomous spacecraft stationkeeping [15], [16] and robust
science planning during communication blackouts [17]. Unlike
simpler reinforcement learning methods that only optimize im-
mediate rewards or need large amounts of training, POMDPs
can be used to produce verifiable offline policies when real
time planning is too time-consuming or risky. In this work,
we integrate Bayesian networks and POMDPs into a single
autonomy framework to support advanced deep space science
operations.

III. METHODOLOGY

The fundamental challenges of autonomy in deep space
mission operations can be addressed with POMDPs. These
challenges include incomplete state information from sen-
sor constraints, stochastic environmental dynamics, and the
need to perform sequential decision-making under uncertainty.
However, model formulations for POMDPs can grow quickly

in complexity due to the high-dimensional space of possible
observations. To address this issue, we use a Bayesian network
to structure the POMDP observation space, which compactly
encodes conditional dependence between measurements. In
the following subsections, we first detail the integration of
Bayesian networks into the POMDP observation model. We
then outline the POMDP formulation, including definitions of
state, action, and observation spaces. Finally, we describe the
process of deriving verifiable, optimal policies (i.e. state-action
mappings) using offline solvers.

A. Bayesian Networks

We apply Bayesian networks to represent complex con-
ditional dependencies in potential life detection instrument
measurements. Such dependencies frequently arise in deep
space missions focused on astrobiological discovery, where
multiple sensors may find correlated observations of the same
underlying phenomena. Bayesian networks are an effective
tool for compactly representing these joint distributions and
conditional dependencies between random variables. Struc-
turally, networks take on the form of a directed, acyclic graph
(DAG). We define a random variable X; to be dependent
on X, if P(X; | X3) # P(Xi), and we represent this
dependency by a directed edge in the Bayesian network.

Capturing variable dependencies with a DAG can signif-
icantly reduce the dimensionality of the observation space.
Rather than requiring m™ — 1 parameters to describe a joint
distribution among n variables with m possible values each, a
quantity that grows exponentially, Bayesian networks reduce
the number of required parameters to » ., m;(k; — 1). This
formulation ensures that, while the number of parameters
needed for each variable grows exponentially with the number
of parents, the total number of parameters across the network
grows linearly with n, the number of variables, assuming
bounded parent sets. This is made possible by factoring the
joint distribution through the following chain rule

P(z1.) = I_IP(xZ | parent(z;)) (1)
i=1
Equation (I)) which implies that the joint probability distribu-
tion over random variables is equivalent to the product of all
conditional probability distributions. For example, a Bayesian
network with structure A — B — C can be fully described
by P(A,B,C) = P(A)- P(B|A) - P(C|B).

The structure and probability distributions of a Bayesian
network can be designed by domain experts or learned from
data [18]. A network for life detection must largely be expert-
designed due to epistemic uncertainty about deep space en-
vironments and extraterrestrial life. Here we choose a causal
graph structure, meaning parents directly influence the obser-
vations their child nodes produce. Causal graph structures tend
to have sparser connections between network nodes, which
mimics the sparsity found in graph structures in real-world
applications [19].

B. Partially Observable Markov Decision Process

A partially observable Markov decision process (POMDP)
is a mathematical framework for modeling sequential decision-
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Fig. 1. Sequential decision network illustrating the POMDP formulation [18].

making problems under uncertainty [18]. In a POMDP, an
agent (i.e. a spacecraft) interacts with an environment charac-
terized by a set of hidden states S. At any timestep, the agent
exists in some true state s € S, but cannot directly observe it.
Instead, the agent receives a noisy or incomplete observation
o € (O, generated according to the observation function
O(o | s,a), which specifies the likelihood of observing o given
the current state s and action a. Using o at each time step, the
agent selects an action a € A from the set of possible actions.
The state then updates to s’ € S according to the transition
function T'(s’ | s,a). This function returns the likelihood of
entering the next state s’ given the current state s and action a.
After transitioning, the agent receives a reward R(s, a), which
quantifies the immediate benefit of that state and action. A
POMDP P is then defined by the tuple

P=(S5,A0,T,0,R) 2

which describes state, action, and observation spaces along
with transition, observation, and reward functions. A visual
representation of the sequential decision framework of a
POMDRP is shown in Figure [I]

To solve a POMDP, the agent maintains a belief B, a
probability distribution over possible states, to track its un-
certainty about the true state at each timestep. The agent
updates its belief at each timestep based on the its action and
observation. Various solvers attempt to maximize the agent’s
expected cumulative reward given the agent’s evolving belief.
These mappings of an agent’s belief to an optimal action are
referred to as policies, which a variety of available solvers can
compute. In this work, we use the Successive Approximations
of the Reachable Space under Optimal Policies (SARSOP)
algorithm [20] to precompute a policy that can be thoroughly
validated and tested prior to deployment. SARSOP approxi-
mates the optimal value function by only sampling reachable
belief points under optimal policies. This method significantly
improves efficiency over exact methods and is well-suited for
problems with large or continuous state spaces.

IV. ENCELADUS ORBILANDER CASE STUDY

To illustrate the practical application of our methodology,
we present a case study focused on the Enceladus Orbilan-
der mission concept, with particular attention to autonomous

Fig. 2.
sometime in the 2050s [21].

Artist’s impression of Orbilander on the surface of Enceladus

control of the Life Detection Suite (LDS) instruments. We
provide a brief mission overview of the Enceladus Orbilander
and describe the design of a Bayesian network that models
LDS instrument measurements. We then formulate a POMDP
that uses these observations to support efficient autonomous
science operations for life detection.

A. Mission Overview

The Enceladus Orbilander, developed in partnership with
NASA and APL, is a flagship mission concept designed to
search for evidence of life and assess the habitability of
Enceladus, a Saturnian moon known for its subsurface ocean
and ice plumes. The mission architecture includes both orbiter
and lander phases, enabling comprehensive characterization
of biosignatures ranging from polyelectrolytes, cells, biotic
amino acids, to other indirect metrics like pH. The Orbilander
is equipped with a sophisticated life detection suite of six
instruments: two mass spectrometers, an electrochemical sen-
sor array, an organic analyzer, a microscope, and a nanopore
sequencer. During the orbiter phase, the spacecraft is expected
to collect between 1 and 20 samples, depending on plume
activity and variability [21].

The Orbilander faces significant operational challenges,
including stringent power and communication constraints. The
12 hour orbital period restricts the duration and frequency
of ground communication windows, limiting opportunities for
real-time decision-making. Moreover, the radioisotope ther-
moelectric generators (RTG) are projected to lose 13% of
their battery capacity by Saturn orbit insertion and up to 22%
by landing, potentially limiting instrument use and mission
lifespan [21]. These factors underscore the importance of
robust, precomputed autonomy to ensure efficient and adaptive
science operations even during off-nominal scenarios. We for-
mulate a POMDP of the Enceladus Orbilander LDS operations
to address these concerns, computing a policy that adaptively
and autonomously sequences science instruments. A Bayesian
network integrated into the POMDP models dependencies
among candidate biosignatures and measurement uncertainty.
In the following section, we detail the structure and role of
the Bayesian network used to model the observations of our
POMDP decision framework.
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TABLE I
SELECTED BIOSIGNATURES AND HABITABILITY METRICS

Name Characteristic Domain Parent Nodes
Co Life 0.1} -
C1 Polyelectrolyte Presence {0.1} Co
Co Cell Membrane Presence {0,1} Co
C3 Autofluorescence {0,1} Co
Cy Molecular Assembly Index > 15 {0,1} Co
Cs Biotic Amino Acid Diversity {0, 1, ..., 22} Co
Ceg L:R Chirality Ratio Percentage [0, 100] Co
Cr Salinity Percentage [0, 100] Co
Csy CHNOPS Abundance Percentage [0, 100] Cy,Cs
Cy pH [0, 14] C1,Cs
Cio Redox Potential [V] [-0.5,0] Cs

B. Bayesian Network Design

Before we introduce the life detection suite POMDP, we first
present a Bayesian network designed to model dependencies
between biosignatures and environmental metrics relevant to
habitability of Enceladus. The network enables us to rigorously
quantify how different observed characteristics inform the
likelihood of a sample having biotic or abiotic properties
while condensing the observation space for computational
efficiency. We select sample characteristic nodes according to
the measurement capabilities of the Orbilander life detection
instrument suite. Table [ outlines the full list of relevant sample
characteristics and direct biosignatures.

7S

Cs

Ch Co

C' 7 09 010

Fig. 3. Selected Bayesian network structure. Though many more character-
istics and dependencies may exist, we present a simplified model for clarity.
Descriptions of all nodes can be found in Table [I]

These sample characteristics are formed into a Bayesian
network in Figure [3] outlining how the existence of life Cj
directly informs the presence of various biosignatures in a
sample. Some nodes, C; through Cj, represent strong direct
biosignatures, such as the presence of polyelectrolytes or cells,
while others reflect weaker, more ambiguous indicators of life.
Biosignature signals should arise only if life is present, which
we depict as a causal, conditional relationship in our Bayesian
network. For example, measured pH Cy depends on amino
acid abundance C5 and polyelectrolytes Cy, which in turn
depend on whether life is present. This leads to several tiers
of connections in the Bayesian network structure, building
a causal graph with life as the root node that affects all
biosignature children nodes. As discussed in Section [II-A]
using the Bayesian network structure leverages conditional

dependencies that minimize model parameter count and com-
plexity while preserving all essential relationships.
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Fig. 4. Selected conditional probability distributions, each corresponding to a
node and its set of parents within the Bayesian network. Direct biosignatures
are functions of life and habitability metrics are functions of biosignatures,
according to the causal graph convention. For a complete visualization of all
distributions, see Appendix.

=true, C5=22)

For each biosignature listed in Table|l} we define conditional
probability distributions (CPDs) representing the likelihood of
observing a biosignature when life is present or absent in the
sample. These CPDs are shown in Figure [4] and Figure [9]
Each distribution is designed using Figure [3] and insights from
existing astrobiology literature, though expert opinion may
vary [4], [22], [23]. Due to the lack of empirical data of
biosignatures from icy moons like Enceladus, the Bayesian
Network’s CPDs must be manually crafted. We follow the
strategies for addressing the challenges of biosignature CPD
design from Marshall et al. [23]. As future missions collect
more observational data from deep space environments, both
structure and CPD parameter learning can be performed to
design Bayesian networks that better represent the statistical
patterns of biosignature evidence.

In general, an effective biosignature is one for which the
probability of detecting certain observations is significantly
higher when life is present than with strictly abiotic processes;
that is, P(observation | life) >> P(observation | abiotic). In
addition, a biotic signal must be strong enough to surpass the
detection threshold of each instrument. For the purposes of
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this analysis, we adopt an optimistic prior—serving as our
null hypothesis—P(life) < 107°. To enable exact Bayesian
inference and reduce the dimensionality of the observation
space, we discretize the CPDs using histogram binning. For
continuous variables, approximate inference techniques would
be required. In the next section, we describe how this Bayesian
network can represent POMDP observations.

C. Life Detection Suite POMDP Formulation

The scope of this POMDP models instrument operations for
the Enceladus Orbilander life detection suite (LDS), a subsys-
tem within the Orbilander spacecraft. This focus minimizes
complexity within the state, action, and observation space.

To model the LDS as a POMDP, we introduce state vector s.
The first element, sy, denotes the volume of sample available
for LDS subsystem analysis. Samples are passively collected
in a funnel during the spacecraft’s orbital phase [21l]. This
value is fully observable, meaning that observations oy = sy .
The second state element, sy, represents the sample’s true
life state, i.e. whether the sample is biotic or abiotic. sz, is
only partially observable via instrument measurements, which
produce noisy observations oy, of the characteristics outlined
in Table[l] In a fully independent observation model, where all
m characteristics can assume n values, the observation space
would scale very poorly (O(n™)). However, the Bayesian
network defined in Figure [3| encodes dependencies between
observations into a factored form. This improves scaling while
preserving measurement interpretability and causality.

The POMDP allows the following actions to be taken after
observing state s at each timestep. These are

ai,...,ag Use instrument a; Vi € {1,...,6}

a Accumulate sample volume (idle)
A= ST 3)

as Declare abiotic

ag Declare biotic

where instrument actions a;...ag can only be performed if
enough sample volume is available for that instrument. For
example, the Orbilander’s nanopore requires far more sample
volume than other instruments like the electrochemical sensor
array. Each instrument action a;...ag produces an observation
observation o of the current state s. Each instrument returns
measurements listed in Table |LI| simultaneously. For example,
HRMS measures four sample characteristics C5, C7, Cs, Cqp
at once.

TABLE 11
ORBILANDER LIFE DETECTION INSTRUMENTS

Action Instrument Name Measurements
ai High-Resolution Mass Spectrometer (HRMS)  C5, C7, Cs, C1o
as Separation Mass Spectrometer (SMS) Cs,Cs
as Microfluidics Device (uCE-LIF) C5,C6
aq Electrochemical Sensor Array (ESA) Cc7,C8
as Microscope Ca,C3
ag Nanopore Ch

The last two actions, ag and ag, are terminal actions. ag is
used to declare a sample abiotic if insufficient signs of life are

observed, while ag is used to declare that life has been found
in a particular sample.

Actions were designed in this way to match constraints
of the Orbilander sample preparation chamber, which only
prepares one sample at a time. This batching behavior implies
that with each new sample collection, the underlying life state
of the sample, sy, may change. The effects of each action a;
on the sample life state s; and volume sy are captured by
the POMDP transition function 7T'(s,a). As previously stated,
given a current state-action pair, 7'(s, a) defines a probability
distribution over possible next states s’. The following equa-
tion describes the transition logic.

s~ P(life) )
S/\/:SV+Uacc 1fa:a7
T(s,a) = st =sL
S = sy — vuse(a) ifae€{ay,...,a6}
st si, =End State  if a € {as, a9} "

Three main types of transitions occur with sample pairs
(s,a): sample accumulation a7, instrument use a1, ..., ag, and
declaration of the sample’s biotic state ag,ag. For sample
accumulation, the spacecraft accumulates more sample sy
based on the Enceladus surface plume fallout rates vge., a
time-varying signal. Every accumulation period has a small
likelihood P(life) of altering the sample’s life state sr. In-
strument usage actions do not affect the sample’s biotic state,
and only the sample volume sy, gets reduced according to the
amount of sample consumed by instruments aq,...,ag. The
terminal state of the POMDP is reached when an action is
taken to declare the current sample as abiotic ag, or biotic ag.

The reward function is designed to capture several compet-
ing objectives within instrument operations. In the context of
life detection, a central tradeoff arises between reducing sam-
ple uncertainty and maximizing sensitivity to biosignatures:
the former may lead to false negatives, and the latter to false
positives. To balance the consequences of each, we introduce
a design parameter A to the reward function, which scales the
cost ratio between false conclusions and sufficient information
gathering. Similarly, 7 is a risk aversion parameter to penalize
false negatives. The full reward equation is

0 Correctly declare biotic
-7 A Correctly declare abiotic
R(s,a) = ¢ —A Incorrect declaration (5)
(1- )‘)575‘77"/’“ Running instrument
—00 Infeasible actions
where s7}%* represents the maximum sample volume capacity

in the LDS sample preparation chamber.

To encourage the agent to search for life for as long as
possible, no penalty is associated with declaring life in a
sample (the ideal outcome). All other actions have associated
penalties, even when the agent correctly declares samples
abiotic, as donated with 7. This reflects the cost associated
with a potential false negative. False conclusions about a
sample’s biology incur a heavier penalty following parameter
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A to motivate the agent to make accurate declarations. Infea-
sible actions—running an instrument with insufficient sample
volume, for example—are given a near-infinite penalty. Valid
instrument runs are penalized according to how much sample
volume has been consumed, scaled by (1 — A). By tuning
A € [0,1], preferences can be set on which objective the
agent should focus on. If the agent should prioritize reducing
uncertainty about the underlying sample’s life state, then A
should be large and approach 1. On the other hand, if the
agent should react quickly to the samples it has access to
(near end-of-life, for example), the A parameter should instead
approach 0. We provide experiments in the following section
to determine the best A factor to balance both objectives
appropriately.

We further outline additional constants in the Life Detection
Suite POMDP in Table

TABLE III
STATIC PARAMETERS FOR LIFE DETECTION POMDP

Parameter Variable Value
Number of instruments n 6
Sample chamber capacity sy 100%
Sample fallout rate Vace 10
Instrument sample usage:  Vyse
HRMS Vuse(a1) 1%
SMS Vyse(a2) 6%
uCE-LIF Vuse(as) 2%
ESA Vuse(aq) 3%
Microscope Vyse(as) 1%
Nanopore Vuse(a6) 89%

D. Concept of Operations Algorithm

The baseline we compare to our methodology is the Concept
of Operations outlined in the Enceladus Orbilander’s mission
planning document [21]. We provide the full ConOps in
Algorithm 1} The ConOps employs a structured, cyclic, multi-
phase algorithm to systematically assess the presence of life.
In each cycle, the algorithm accumulates samples up to a
specified maximum volume needed to run all instruments.
Once sufficient sample volume is collected, the algorithm
sequentially activates each scientific instrument to analyze
the sample, recording the resulting observations. After each
observation, the algorithm updates the belief in life based on
the observations derived from the instrument measurements.
The decision phase then compares the updated belief against
the predefined thresholds of when to declare life. If the belief
exceeds the life detection threshold, life is declared detected;
if it falls below the dead threshold, the absence of life is
declared. This threshold-driven approach, while systematic,
imposes a very rigid structure on the life detection process,
potentially limiting flexibility in interpreting ambiguous or
borderline results.

V. PoLICY PERFORMANCE RESULTS

We now evaluate the performance of our precomputed
autonomous decision-making policies for the LDS POMDP
against the performance of the existing Enceladus Orblilander

Algorithm 1 Enceladus Orbilander Concept of Operations for
Life Detection
1: ORBILANDERLIFEDETECTION
: Initialize by; ¢
. Initialize Tj; g > Threshold of belief indicating life
. Initialize Tyeqq > Threshold of belief indicating dead
: Initialize sample volume: sy < 0
: Initialize instrument status: all unused
: while mission not complete do
surface mission
8: while Tyeq.q < blife < Tlife do

> Belief in life

~N N B W N

> Repeat for entire

9: // Phase 1: Accumulate sample

10 while sy < s77%7 do

11: Accumulate sample sy <= Sy + Ugee
12: // Phase 2: Run instruments

13: for each instrument a; in aq,...ag do
14: Run instrument a; and receive observation o;
15: Sy Sy — Uyse(a;)

16: /I Phase 3: Update belief

17: Update by;f. < P(life | 01)

18: // Phase 4: Decision

19: if blife > Tlife then

20: Declare Life Detected

21: else if b;;rc < bgeqq then

22: Declare No Life Detected

ConOps. All policies were generated using the offline POMDP
solver SARSOP. To select an effective policy, we first con-
ducted a parameter sweep over A, which governs the tradeoff
between minimizing uncertainty and maximizing sensitivity to
biosignatures. Using the policy corresponding to the optimal
A in our Pareto frontier, we analyze the resulting alpha vector
plot and illustrate a decision tree from a single rollout. We
then compare the classification performance of the SARSOP-
derived policy to that of the current Orbilander concept of
operations [21]].

A. Selecting the Best Design Tradeoff

We evaluate a range of A\ and 7 values between [0, 1],
comparing the resulting policies by two metrics: uncertainty
in final agent declaration and average sensor usage.

The former is the final uncertainty margin—the agent’s
belief gap between its chosen declaration (biotic or abiotic)
and the alternative hypothesis at the final timestep. This metric
ranges from O to 1, where a value of O indicates the agent
was fully confident in its final declaration, and values closer
to 1 indicate greater uncertainty. This measure captures how
decisively the agent reaches conclusions based on the available
evidence, regardless of whether the decision is ultimately
correct.

The second metric is the average cumulative sensor usage
per rollout. Longer rollouts imply more sensing, allowing
the agent to gather data and build stronger beliefs about
each sample’s biology. However, excessive accumulation and
testing can have diminishing returns. In the context of the LDS
system, each new batch introduces additional sample material,
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Fig. 5. Pareto frontier indicating optimal tradeoff between sensor usage and
sample analysis accuracy.

potentially diluting or contaminating previous biosignatures.
As a result, strong biotic signals may become obscured by an
increasing concentration of abiotic material, making it harder
for the agent to confidently detect and declare life when it is
actually present.

For every policy, 100 rollouts were performed to assess
uncertainty margins and average sensor usage. Metrics for
each policy are plotted in Figure [5] to compare performance,
and a Pareto frontier of most optimal solutions is identified
in red. Although multitudes of A\ values were tested during
this process, most values of A less than 0.8 had unrealistic
policies that did not provide useful behavior, with premature
halting of testing. Generally, smaller A values corresponded
to very risk-tolerant policies, with a willingness to declare
biotic or abiotic signs in a sample with high certainty. A
linear increase in A did not produce a similar linear corre-
lation in either of the two metrics, and only certain regions
of A € [0,1] created comprehensible policies. For policies
depicted in Figure [3] all values of A € [0.85,0.9999].
Higher values of A corresponded to very risk-avoidant policies,
which became overly conservative with declaring samples as
biotic/abiotic once as A — 1. We find that the A values
leading to the best depicted policies on the Pareto frontier
were [0.85295,0.996, 0.998,0.999, 0.9995, 0.9998]. We iden-
tified an optimal balance with A = 0.85295, which had the
lowest uncertainty margin among all tested policies while
maintaining reasonable average sensor usage. All subsequent
experiments are performed with this policy.

B. Alpha Vector Policy

To better interpret the A = 0.85295 policy generated with
SARSOP, we examined the produced set of alpha vectors,
which encode the expected utility of each action under each
possible state. As each alpha vector is linked with a specific
action, the dominating alpha vector returns the most optimal

action to take under a given belief over s;. Examples of
dominating alpha vectors are shown in Figure [6]

(]
=
p
r — a9 (a=4)
a1z (a=4)
— aiq (a=4)
0 5.10"2 0.1

Belief in Life (P(L = 1))

Fig. 6. Example set of alpha vectors over belief in sz, at a sample volume
of 46 units.

Due to the multi-dimensional state space of our problem,
a set of alpha vectors, similar to Figure [6] exists for every
possible sample volume sy. To visualize this, in Figure
we plot the dominant alpha vector per sample volume and
current belief over sy, revealing a complicated set of action
sequences depending on how much sample is accumulated
by the Orbilander LDS system. This plot can be used not
only as a look-up table, but as a validation tool to check
the policy’s recommendations of possible belief states to be
used in any situation. In Figure [/, we found that the policy
alternates between using instrument actions as, as, a4 and as,
and only declares samples abiotic ag or biotic ag once the
agent’s belief in life passes a certain range. The range for
when the agent declares samples abiotic ag, is much larger
than when the agent declares samples abiotic ag, indicating
that the policy attempts to find more opportunities to detect
life, rather than rule it out. This behavior aligns with the
reward function outlined in Section The policy also has
a clear preference for using instrument action a4, the ESA,
for evaluating samples. Other instrument actions, ao, as, and
as are used only when the agent needs to verify that life
is abiotic, which brings in the use of additional sensors for
verification. Samples are only accumulated using a7 when the
sample volume sy is lower than 20%.

C. Decision Tree

To interpret spacecraft behavior over time, we depict simu-
lations using a decision tree as shown in Figure |8} Red arrows
indicate negative or absent observations of a Boolean variable
(e.g. polyelectrolytes detected or not detected), while green ar-
rows show a biosignature was indeed measured. Black arrows
denote numerical, real-valued measurements. The belief in the
probability of life in the analyzed samples P(life) is tracked
at each time step. Following the tree structure, it is clear
that certain observations guide the agent toward increasingly
confident beliefs about P(life), while others are inconclusive.
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Fig. 7. Dominating alpha vector at each belief state and sample volume.
Associated actions are given in the legend for the A = 0,7 = 0,7 = 0
policy from the offline solver, SARSOP.

The tree reveals early-stage exploration dominated by sensor
actions, later followed by biotic or abiotic declarations as
confidence is built.

Instrument 1
P(life) = 0.3

Instrument 2
P(life) = 0.03

Instrument 3
P(life)=0.9

Instrument 5
P(life)=0.13

Instrument 4
P(life)=0.8

Instrument 4
Plife) = 0.63

Fig. 8. A decision tree visualizing possible rollouts of the SARSOP optimal
policy. Edges correspond to observations, and nodes show both optimal actions
and updated beliefs over the prior.

D. Binary Classifier Performance

Though accuracy in predicting the presence of life is only
one performance measure (others being total data gathered,
total value of information, measurement efficiency, etc.), we
compare each policy’s false positive, true positive, false neg-
ative, and true negative rates in the confusion matrices shown
in Table [TV} Overall, we show improved performance over the
Orbilander ConOps in simulation in all categories, especially
reducing false negatives due to the policy balancing both
objectives of minimizing declaration uncertainty and quickly
reacting to measurements.

TABLE IV
CONFUSION MATRICES OF POLICY ACCURACY

(a) SARSOP Policy (Ours)

Predicted
Biotic  Abiotic
Biotic 100 0
Actual — \piotic 9 91

(b) Orbilander ConOps Policy

Predicted
Biotic  Abiotic
Biotic 90 10
Actual — ppioic 7 93

VI. CONCLUSION

This work presents a solution for performing autonomous
adaptive science operations for deep space missions, using
Enceladus life detection instrument operations as a case study.
We propose a novel integration of a Bayesian network to
represent the observation space of biosignatures captured by
science instruments, combined with a POMDP formulation to
guide autonomous decision-making under uncertainty using
verifiable precomputed policies.

Although our modeling is grounded in the Enceladus Or-
bilander mission, the framework generalizes to a wide range
of science operations in resource-constrained, uncertain envi-
ronments. The modular architecture supports adaptation across
missions by simply updating the Bayesian network structure
or tuning environmental and operational parameters in the
POMDP. In doing so, we lay the foundation for autonomous
systems that are not only efficient and responsive but also
thoroughly verifiable.

In future work, we seek to show improved performance, sci-
ence collection, and minimized risk with SARSOP during off-
nominal events, such as fluctuating sample volume (Enceladus
plume ejecta rates are highly uncertain) as well as degraded
or broken life detection instruments. Another future goal is
to integrate the station keeping subsystem into the autonomy
stack, which directly influences plume volume accumulated
and passed to the life detection instruments. This may also
involve incorporating more engineering constraints into the
decision-making framework, like power and memory budgets.
By expanding our methods to handle degraded sensing, related
subsystems, and dynamic environments, we move closer to
building resilient, autonomous science platforms capable of
real-time decision-making at the edge of the solar system.
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Fig. 9. Conditional probability distributions used in constructing the Bayesian
network. Future studies may develop data-driven distributions to improve
model accuracy.
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