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Abstract—The validation and verification (V&V) of safety-
critical functionalities of space robots engaged in autonomous
task-execution is facing new challenges. The recognized advan-
tage of optimal control and machine learning for providing
planning and perception capabilities onboard a robotic spacecraft
calls for the development of new V&V techniques to ensure
robust, explainable, and resilient autonomous behavior. This
paper presents V&V techniques and developments at DLR of
safety-critical aspects specifically for the autonomous robotic
capture of a target satellite. The paper first addresses optimal
control for robustly planning the robot arm’s interception with
a predefined grasping point on the tumbling target satellite, as
well as for providing the means of performing mission planning
in view of operational and motion constraints. Deep-learning
based perception algorithms are then addressed, underlining
the advantage of these with respect to classical approaches and
presenting new methods for their V&V. Finally, a novel model-
based design approach is presented for rapid prototyping and
simulation of orbital robotic spacecraft engaged in the close
proximity operations of interest.

Index Terms—Orbital Robotics, Validation & Verification,
Deep Learning based Perception, Optimal Control, Model-based
Design, Processor-in-Loop.

I. INTRODUCTION

Developments in the orbital space sector over the last
decades have led to a sharp increase in robotics-related
activities. The current interest worldwide in ensuring the
sustainability of the orbital environment and the security of
space national assets, in the further commercialization of
the space sector with satellite serving capabilities, as well
as, more long-term, in on-orbit assembly, manufacturing and
recycling, leverages robotics as a key enabling technology.
Pioneering steps such as in Japan’s ETS-VII and USA’s Orbital
Express demonstration missions [1, Chapter 55], will soon be
followed by new missions, possibly USA-DARPA’s RSGS [2],
the European Commision’s EROSS SC [3] and the European
Space Agency’s RISE [4] missions, to name some.
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The robotic tasks involved in the above activities are
best accomplished in the supervised autonomous operational
mode, in which the operator on ground provides high-level
commands and may intervene in case of contingencies. The
on-board GNC of the robotic spacecraft performs safety-
critical perception and control functionalities autonomously, to
account for the remoteness, but also possibly for the dynamic
character of the operational environment. One of the possibly
most challenging tasks is the capture of a non-cooperative
target object [5] [6], which is free-tumbling and which does
not provide any information on its state, nor any support for its
capture (dedicated mechanical interfaces or visual features). A
comprehensive analysis of the autonomy challenges for next-
generation space missions can be found in [7].

Optimal control has been recognized as a key technology in
many space-related applications [8], of which spacecraft ren-
dezvous and proximity operations [9] [10], attitude guidance
and control [8], as well as space robot trajectory planning [11]
[12] are some of the relevant examples. The need for validation
and verification (V&V) of these methods was clearly outlined
by the European Space Agency (ESA) in [13]. Most of the cur-
rent applications are based on convexification of the optimal
control problem. DLR has recently developed a method which
serves as an alternative to embedded optimization to treat
highly nonlinear robot trajectory planning tasks, recognized to
be non-convexifiable in [11]. The method uses a sensitivity-
based update of pre-computed feasible solutions, which is
deterministic and not polynomial-time NP-hard in nature. The
method also provides provable robustness for a predefined
uncertainty in the given task. We expand on the discussions
of requirement satisfaction and robustness of optimal control-
based planning methods in [13] [14] to address non-convex
methods in the presence of uncertainty and present a tool for
verifying that mission requirements are satisfied on a given
parameterization of task space.

Modern methods for robot perception and control are based



nowadays on deep learning and optimal control. These meth-
ods are well-established for applications on ground but still
need V&V tools. This is especially the case for their imple-
mentation in space, to possibly ensure robust, explainable, and
resilient autonomous behavior for the safety-critical function-
alities of interest. Deep learning (DL) based perception has
been extensively developed for pose estimation, with visual
cameras or LiDAR sensors, to outperform the more classical
approaches [15], [16]. In this paper we summarize key insights
from recent guidelines for V&V of space software based
on DL components and we present the specific steps we
performed in the V&V process of our safety-critical LIDAR-
based pose estimation method.

DLR is also actively involved in the development of orbital
robotic systems, contributing these in the EROSS SC and RISE
missions. In these activities, a robotic arm is mounted on a
satellite which can be controlled (combined control) or left
free-to float (free-floating control). It soon became evident that
adequate validation and verification tools for orbital robotic
systems are missing. The model-based design approach, which
strongly favors rapid prototyping in the first phases of a
mission-oriented project, are currently well-developed for
spacecraft but not for robotic spacecraft GNC systems. In this
paper, a model-based design approach is outlined which allows
the classical development steps of Model-in-the-loop (MIL),
Software-in-the-loop (SIL), Processor-in-the-loop (PIL) for an
orbital space robot. This allows the validation of control
algorithms such as the combined or free-floating control, [9],
[17].

The remainder of this paper is structured as follows. Sec-
tion I provides a description of the software architecture
for a free-flying robot in the capture of a target satellite.
In Section III motion planning solution are discussed, the
perception pipeline is presented in Section IV, and Section V
presents the V&V verification process. Section VI concludes
the paper.

II. OVERVIEW OF THE OPERATIONAL SCENARIO AND OF
THE RELATED SOFTWARE COMPONENTS

On-orbit robotic rendezvous and proximity maneuvers lead-
ing to the capture of a target satellite, are completed in
stages. This paper focuses on the phase consisting of the
robotic approach and capture of the target satellite. This
phase, depicted in Fig. 1, occurs after the completion of the
close-range rendezvous, where the space robot has reached a
predefined mating point relative to the target, from which the
robot can perform the capture. The robot arm is maneuvered
to bring its end-effector to a predefined grasping point (GP)
on the target satellite (approach or interception task). The
target satellite is non-cooperative and tumbling with an angular
velocity w;. The target is subsequently grasped and stabilized
by the arm (capture task).

In order to execute the approach and capture of the target
satellite, several software modules are required. A Controller
module determines the necessary control forces and torques
with which the space robot should be actuated, based on

Fig. 1. A space robot approaching a grasping point (GP) located on a target
satellite that is tumbling with uncertain angular velocity w¢. The trajectory
of the end-effector was planned on the red dashed line. As an online reaction
to the deviation from the expected target satellite motion, the green dashed
trajectory must be followed.

Motion Planning

. Controller
Pipeline

Perception Pipeline

Fig. 2. A high-level block diagram of the software modules required for
planning and executing the approach of the robot arm to the target satellite’s
grasping point.

sensory feedback and a reference trajectory. The Motion Plan-
ning Pipeline provides reference trajectories for the Controller
module to track, so that the controlled motion of the robot
remains feasible and the grasping point on the target satellite
is reached, despite of operational and motion constraints.
The Perception Pipeline provides sensor-based feedback to
the Motion Planning Pipeline so that the motion parameters
of the target satellite can be estimated and trajectories can
be generated based on this information. The Controller also
receives sensory input from the Perception Pipeline. Fig. 2
illustrates a high-level block diagram of these component
modules and their interactions.

III. OPTIMAL CONTROL
A. Optimal Control in orbital robotics

Robots are involved in highly complex activities on-orbit.
Extravehicular activities include the GNC approach to a target
object [10] [18] [19], the approach of the robot to a grasping
point on the target [12], and the capture of the target. Free-
flying robots have also recently been involved in intravehicular
activities on the ISS [20]-[22].

Various tactics are used in the motion planning and control
of complex space robots. Optimal control has been demon-
strated to be an effective tool — including convex [11] [23] and
non-convex [10] [19] [24] [25] methods. In many situations,
it is beneficial to track a pre-planned trajectory, see [9], [26]
and the sources within.

As demonstrated in [10], [12], [19], [20], [27], and [28],
the optimal control problems governing the motion of the



space robot in the GNC approach of the target and the robotic
approach to the grasping point can each be formulated as a
parametric nonlinear program NLP(p). The NLP is parametric
in p € R"; on a given time interval to < t < ty,
discretized into n uniform steps, or via points, such that
ot = (¢ — t9)/(n — 1); and is of the general form

Inin J(z,p) (1)

s.t. Gi(z,p) <0,i=0,...,n¢g

Hj(z,p) = O,] = O7 ..oy IH,

where z is the solution in terms of a judiciously selected pa-
rameterization of the robot state; J is the discretized objective
function; G; := [g; 1(2,p),k = 0:n] " are the discretized in-
equality constraints; H are the discretized equality constraints;
and ng and ny are respectively the number of inequality
and equality constraints. The inequality constraints typically
consist of, but are not limited to, boundary, collision, and cam-
era field of view and/or pixel velocity constraints. Unlike the
SCP applications in e.g. [11] and [23], the NLP formulation
does not require the geometry of the target to be convex or
convexified. The online solution of such a NLP(p) formulation
has been demonstrated on the Astrobee testbed onboard the
ISS in the MIT/DLR collaboration ROAM/TumbleDock [20].
Despite this success, common criticisms include: on-board
embedded optimization is computational resource and time in-
tensive, it is difficult to know that a solution to the optimization
problem exits for a given set of parameters before beginning
the costly optimization process, new V&V procedures are
required, and it can be difficult for a human-in-the-loop
operator to approve trajectories when little is known about
the solution (e.g. proximity to constraints) [13] [24] [27].

B. Current methods for V&V of Optimal Control methods

V&V of a sub-system is an indispensable iterative process,
which provides development and operation teams with con-
fidence that the sub-system will operate as expected in the
environment that it was developed for. For software-based
pipelines, like that described in Sec. II, the environment refers
to both the hardware that is to be employed (e.g. PC vs OBC)
and the physical environment within which the hardware is to
operate (e.g. ground vs on-orbit).

Traditional software V&V brings to mind the classic water-
fall or V-shaped procedure. The waterfall description depicts
the V&V process analogously to water flowing down stream —
suggesting that the process flows from one step to the next, and
that, as each is completed, it is left behind. This can discourage
iteration and design improvement.

Alternatively, the V-shaped procedure, shown in Fig. 3,
highlights the interconnected nature of the software design
with its integration into a sub-system, as well as indicates
the iterative nature that software design should take. The V-
shaped description of V&V has therefore gained popularity,
appearing in both ECSS [29] and NASA [30] literature. It is
always possible to take a step (or many steps) back in the
design process to rectify an issue determined in the design or
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Fig. 3. The V-shaped software development life cycle used by NASA Marshall
Spaceflight Center [30], which highlights the relationship of verification (blue
arrows) and validation (red arrows) to the development process.

integration. However, any change to the software requirements
or design triggers the repetition of all subsequent verification
and validation steps to return to the developmental step previ-
ously reached in the design cycle. This can, of course, become
very costly. It is clearly beneficial to fix feasible sub-system
requirements as early in the design as possible.

Software V&V tools can be divided into three categories:
simulation and testing, model-based design, and formal meth-
ods.

o Simulation and testing form the most classic tool set and
remain the most widely used methods. In terms of optimal
control for space robotics, this appears as unit testing of
individual functions, graphical evaluation of a stochastic
sample of solutions of the optimal control problem for
requirement satisfaction, and integration testing of the
interfacing sub-systems.

o Model-based design for optimal control in space robotics
applications involves the construction of a modular opti-
mal control software, commonly using MATLAB and/or
Simulink to facilitate prototyping. After verification that
task requirements are satisfied, the code can be exported
to C++ by a certified Autocoder [31] [32] and compiled
for a given target hardware.

o Formal methods attempt to prove the absence of error
and detect for example dead logic, integer overflow, and
division by zero. These methods come in two major vari-
eties, static analysis and modal-checking. Static analysis
does not execute code or find logic errors, but is used
to detect lexical, syntactic, and semantic mistakes. Static
analysis tools do not appear in literature for V&V of small
satellites software. Modal-checking executes a discretized
model of the software, performing an exhaustive search of
every possible path through the software to verify that no
erroneous results are produced. However, such methods
cannot operate on floating point variables, and have been
shown to be a poor choice for GNC software validation
[14] [30] — in particular those dependent on optimal
control-based motion planning and control [14] [33] [34].



At this time, no formal standard exists for the development
of optimal control-based motion planners or controllers for
on-orbit GNC or robotics, the solution of optimal control
problems for such tasks offline, or the solution of optimal
control problems embedded on-board beyond those for general
software development. To move toward such a standard, ESA
commissioned a study [13] of modern V&V methodologies
and their application to GNC tasks. This call advocated
specifically for optimal control-based methods to be used in
the motion planning and control of satellites and space robots
and for the abstraction of the GNC task into an architecture
of distributed tasks from high level guidance and control to
relevant algorithms to source code and hardware, indicating
a number of relevant tools belonging to the three discussed
categories to be investigated.

As part of the study [14], a benchmark optimal control
problem was developed and an optimizer was implemented
based on an existing algorithm in order to demonstrate a
subset of the proposed topics and relevant tools. The presented
optimal control problem was convexified and the implemented
solver was based on the convex PIPG algorithm. The outcome
of the study was a TRL 3/4 optimal control-based motion
planner and MPC implementation, as well as a report of the
sequence of steps which are parallel to the common approach
used in software design for small satellites [30].

However, it should be noted that the study only considered
convex, interior point method-based optimization. The study
utilized an autocoder to generate C++ code from the model-
designed MATLAB implementation of the motion planner and
controller. While autocoders are gaining popularity, they do
not replace verification of the model-designed code and must
itself be verified after each generation. Finally, this study
demonstrated that formal V&V methods are not yet mature
for optimization algorithms. Formal methods can be used to
evaluate discrete functions, but the non-deterministic nature
of the search for minima and non-integer computation renders
formal methods currently unsuitable for evaluating optimizer
implementations.

C. Robust Optimal control methods

Until now, on-orbit robotics literature has largely considered
the solution and V&V of the convexified optimal control
problem. However, highly nonlinear problems are often not
well suited to convexification or linearization [24] [35]. For
example: (a) A chaser satellite approaching a non-cooperative
tumbling satellite where the relative mating point is located
within the convexified geometry of the target [10], [20], [28];
or (b) A space robot involved in the on-orbit capture of a non-
cooperative tumbling satellite [12], [27]. V&V of non-convex
optimal-control based methods have not yet been codified in
literature, but a similar procedure [14], [30] can be followed:

o Set and verify task requirements early in the project life
cycle.

o Use a modular code design to facilitate verification mea-
sures.

¢ Conduct thorough code review.

o Where appropriate, verification by comparison of al-
gorithm implementations, e.g. integration, optimization,
programming languages.

o Unit and integration testing of algorithms, functions, etc.
Both black box and white box evaluations should be
conducted, especially in the case where formal methods
are not feasible.

o Where appropriate with respect to capabilities of the tools
(only integer-based computation, evaluate on function by
function basis), use formal static and modal methods.

The remainder of this Section addresses questions not yet
discussed in the studies indicated in the preceding section.

A feature of optimal control-based motion planning and
control is the incorporation of a model of the robot and its
environment. Unfortunately, models are never perfect, and
uncertainty in the parametric NLP(p) must be expected.

In the case of the GNC approach to a target or the approach
of the robot to a grasping point on the target, one source of
uncertainty is in the estimated target motion parameters. Fig. 1
illustrates the example of the robot approach to the grasping
point. It is imperative to note that the trajectory generated by
the optimal control-based motion planner (Fig. 1, red dashed
line) is only valid for the set of task parameters for which
the NLP is solved and highly depends on the quality of in situ
target motion parameter estimates. If uncertainty exists in these
target motion parameter estimates, the generated trajectory
must be departed from to successfully and safely complete
the rendezvous and robotic approach maneuvers (Fig. 1, green
dashed line) [9] [10], necessitating replanning of the motion
and increasing the complexity of the control task.

The V&V of modern GNC systems must be considered
as early in system development as possible to reduce costly
design and requirements iteration. An open question in this
process is how uncertainty in related task parameters can be
managed. In particular, the verification that a solution to the
NLP(p) exists at p and the determination of how large the
deviation from the planned trajectory may be without loss of
feasibility are difficult tasks, but must be addressed as part of
the first point in the V&V procedure outlined above.

A relevant tool is the parametric sensitivity analysis of the
solution space of an NLP(p) with respect to a given parametric
uncertainty, which can assist in understanding where the
design requirements and robustness intersect: The Sensitivity
Theorem [26] permits the approximation of solutions of a
given parametric, constrained optimal control problem through
a fast, online sensitivity-based update of a given nominal
solution for perturbed task parameter values [36]. This ap-
proximation is only valid within an estimable neighborhood
of the nominal parameter p. Being able to estimate the
neighborhood of validity of the sensitivity-based update [37],
the task workspace which only includes admissible solution to
the NLP(p) is derived [12]. It is also possible to display the
neighborhoods of validity for collated nominal task parameter
values, providing a neighborhood map, which indicates the
robustness distribution on the task workspace [12], as demon-
strated by the neighborhood map in Fig. 4.



0.8
20.4_
N O

-0.4-

08 _

0.4 0 0.4
04 5% [m] 2 0 2
Y [ml QPee 1 [rad]

Fig. 4. Task workspace and neighborhood map for the approach of the robot
arm to capture the target satellite, which provide an indication of where on the
task workspace a robust solution to the NLP can be found. The two largest
active constraint sets, Aj (no active inequality constraints) and Ay (active
collision avoidance between robot link 7 and target satellite), are shown.

The significance of this result is that the regions of task
parameter space wherein a feasible motion plan can efficiently,
robustly, and provably be found is determinable in the early
stages of mission planning, fulfilling the first point in the V&V
procedure as early as possible. The safest regions (e.g. lowest
number of active constraints, proximity to constraint bound-
aries) of the task workspace can be selected for autonomous
system operations.

Finally, robust optimal control-based motion planning
should be married to a robust controller, e.g. Tube-based
Model Predictive control. This enforces the provable feasi-
bility properties of the planned motion, while extending the
overall mission robustness guarantees to the online disturbance
rejection.

IV. MACHINE LEARNING BASED PERCEPTION
A. V&V process for DL-based software components

While deep learning (DL) methods have the potential to
offer an excellent solution to many perception tasks in space
applications, their development and testing process is still
not well established in the space domain. The traditional
process of software V&V ensures that software development
meets the design requirements (verification) and that the right
software products are produced during the building process
(validation), however it requires adaptations for DL-based
software components because of the substantially different
development and testing processes being followed for data-
driven algorithms. The rapidly evolving field of Al regulation
involves various norms aimed at certifying Al products (e.g.
ISO 42001, ISO 27001), although specific frameworks for
V&YV in space missions are lacking. In Europe, standards are
developed through the European Cooperation for Space Stan-
dardization (ECSS), but there are currently no established reg-
ulations for Al software V&V. New guidelines for ML-based
software have been recently introduced [38], even though not
fully articulating the V&V process. A more comprehensive
approach for safety-critical applications is provided by the
European Union Aviation Safety Agency (EASA) standards
[39], which describe the V&V as a W-shaped, iterative process
encompassing all phases from subsystem requirements and
design to verification, ensuring a thorough examination of the

Fig. 5.
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Fig. 7. The V&V cycle for DL software can be sketched as a W-shaped
process. The figure displays the W-shaped learning assurance process used by
EASA [39], which is concurrent with the traditional V-cycle for traditional
software items (a) and requires several iterations involving both training and
implementation (b).

system’s safety and effectiveness (see Fig. 7). The main steps
of the W-shaped process include management of data, model
development, model testing, and system testing. In the follow-
ing sub-sections we report the current guidelines for each of
these major aspects recommended for space applications [38].

1) Guidelines on data quality: The guidelines on data
quality emphasize the importance of both data management
and the entire data life-cycle. Key aspects include ensuring
high-quality labeling and metadata, maintaining a fully trace-
able data generation pipeline for reproducibility, and proper
data storage. Test data management is also crucial, requiring
appropriate dataset splitting, a probabilistic definition of the
test dataset’s ontology, and an alignment of operational pa-
rameters based on specific scenarios. The guidelines highlight
distinct quality characteristics for various data types. Real
data is valued for its inherent representativeness and neces-
sitates high-quality metadata. In contrast, simulation data’s
representativeness is challenging to evaluate, while augmented
data should focus on consistency with the original dataset.
Lastly, laboratory data present their own challenges, as they
are time-intensive to produce and often do not replicate the
conditions found in the actual environment, which affects their
representativeness and fitness for user needs.

2) Guidelines on model development and testing: The
guidelines on model development emphasize that there is no
favored framework for creating deep learning models, such



as PyTorch, TensorFlow, or Scikit-learn. For safety categories
mid to high criticality, it is recommended to assess the
qualification needs of the inference engine or to consider
compensatory measures. When designing a DL model, certain
characteristics should be prioritized to promote the idea of
“trustworthy AL’ including functionality, reliability, robust-
ness, explainability, and resilience [40], [41]. Various methods
can enhance these attributes, but the appropriate choice will
depend on the specific application. Additionally, model testing
is distinguished from evaluation on a test dataset, as it encom-
passes a wider range of techniques like operational design
domain assessment, coverage testing, out-of-distribution test-
ing, adversarial testing, and SEU testing [38], [41]. Effective
testing may necessitate re-training the model with new data or
revisiting its design to adapt to newly encountered conditions.

3) Guidelines on system testing: The guidelines on system
testing for DL software components almost completely align
with the traditional software V&V processes. The initial step
involves assessing the safety criticality of the DL. component,
which helps classify its criticality level and allows for potential
mitigation through operational, hardware, or software provi-
sions. Following this, a Failure Mode, Effects, and Criticality
Analysis (FMECA) must be performed on the DL methods in
accordance with standard practices used in space systems. For
DL method, to address the identified risks, mitigation strate-
gies, termed safety cages”, can be implemented, incorporating
various methods such as rule-based implementations, voting
schemes, and performance monitoring [38], [39].

B. Status of V&V process for our perception methods

In [15] we have proposed a LiDAR-based DL global pose
estimation method to provide a robust initial pose estimate of
a known client satellite. Our lightweight DL method P2PReg
(for Point cloud to Pose Regression) processes unordered point
sets and regresses pose parameters which are adapted to the
symmetries of the client object.

In this section we report the status of the V&V process for
our pose estimation software, following the main steps of the
guidelines reported above.

1) Data quality: We rely on two different datasets, a
synthetic dataset and an experimental one, collected in our
OOS-SIM facility (see Fig 8). The data quality characteristics
are the following.

o Representativeness. Simulated data have been compared
with experimental data to verify the correctness of the
sensor model. The real data have been characterized
regarding anisotropic noise on a flat surface (quantitative
evaluation) and the presence of beam divergence (quali-
tative evaluation). The satellite mock-up is representative
only in part, due to the use of materials which are not
specifically for usage in space. The sensor (a dual-LiDAR
system composed by two Velodyne VLP-16) comes from
the automotive domain.

« Fitness. The synthetic dataset covers the whole pose space
constrained to having 2m up to 50 cm range distance
from the client and constrained to have the client present

Manipulator

Camera

Servicing satellite

Target satellite
LiDARs

Fig. 8. The DLR OOS-SIM facility consists of a client satellite mock-up and
a servicer satellite mock-up, equipped with a manipulator for robotic capture,
a dual-LiDAR system and a stereo camera. We tested for sim2real transfer our
LiDAR processing DL method P2PReg, which is trained solely on synthetic
data, using data from the OOS-SIM [15].

in the FoV. No perfect client pointing is assumed. No
dataset specifically for tracking has been produced up to
now, however tracking trajectories are generated online
during SIL and PIL tests. The pose space in the lab
is very limited, however it would be mostly impossible
to overcome such limitations with other set-ups and
maintaining the same simulation capabilities. The limited
pose space could be still fit for a mission, depending on
the client satellite and on the operational trajectories.

o Metadata. Metadata allow to reproduce the data samples,
however for synthetic data beam divergence is generated
randomly and augmentations (like noise) are applied
successively. Regarding the OOS-SIM, the current ground
truth is obtained with kinematics, and is being currently
improved by means of a VICON system.

2) Model development and testing: In [15] we show the
method’s functionality by benchmarking against other DL and
classical methods. The method’s robustness to data artifacts
is also tackled, and a good sim2real transfer is achieved
training solely on synthetic data. We focused our development
on a lightweight method, to overcome possible shortcomings
related to porting the method to space HW. We are confident
that in the future more suitable space HW for DL methods will
be available, as currently some alternative solutions relying on
GPUs are being already tested for use in space [42].

3) System testing: Our DL method is at the moment not
inserted in a safety-cage, however we evaluated possible
fallback classical initialization methods in [15], [43]. After
carrying out a preliminary requirements definition, the safety
criticality assessment, and a FMECA analysis, we integrated
our DL method in the SIL and PIL environments. For future
work, we plan closed-loop tests of the integrated system,
followed by HIL tests.

V. MODEL-BASED DESIGN

Once the mission requirements are roughly available, the
initial phase progresses through a sequence of rapid proto-
typing using model-based design tools [44], [45]. However,
contemporary tools have been aimed at GNC applications, and
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the topics relevant to robotics prototyping, e.g. multibody dy-
namics, momentum conservation, capture dynamics, have been
missing. At DLR, a co-simulation framework, see Fig. 9, has
been developed that enables model/software/processor-in-the-
loop, also known as MIL/SIL/PIL. In particular, the framework
is composed of CoppeliaSim as the physics provider and MAT-
LAB/Simulink as the control prototyping environment. The
inter-process communication between the orbital robot and
control software was developed using Links and Nodes, while
high-bandwidth data communication, e.g. for synthetic camera
images, was developed using SensorNet, both of which are
developed at DLR. The main novelty over the state-of-the-art
[46] is that, our approach allows the CoppeliaSim simulation to
run with a lower time-step of 10 [ms], while the communica-
tion for robot joints runs at a faster and synchronized time-step
of 1 [ms] with the control software for high-fidelity torque
control. This ensures that the non-dynamics modules, e.g.,
graphics rendering, are computed slower than the dynamics
engine, which is not possible with the supported Application
Programming Interface (API) of CoppeliaSim. To achieve this,
an unsupported API around the supported API was developed,
which communicates directly with the underlying dynamics
engine that runs with a finer time-step. This co-simulation
framework is exploited in external projects in which DLR is
part of, e.g., ESA MIRROR [47], EU EROSS+/10D [3]. In the
co-simulation, the motion of orbital robot is simulated using
Open Dynamics Engine (ODE) because it ensures momentum
conservation [48].

A snapshot of the co-simulation environment is shown in
Fig. 10, in which the main scenario is shown. In particular,
the spacecraft/satellite mock-ups are the same as on the DLR
OOS-SIM facility (see [49]) whereas the robotic manipulator
is the KUKA LBR 4+. In the inset figures, the synthetic
camera images and the LiDAR point clouds are shown. While
the synthetic images are published at 10 [Hz], the point clouds
are generated at 1 [Hz]. With these components, the approach
phase of the mission scenario can be validated. In Fig. 11,
a capture scenario is shown. To demonstrate grasping for
prototyping purposes, the suctionPad functionality is used,
which creates a closure-constraint, i.e., the satellite is inertially
linked to the end-effector of the robotic manipulator. This
enables momentum transfer in the simulation, and gives a first
prototypical values for post-grasping requirements.

c @ 0D o 8=
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Fig. 10. Synthetic images (camera) and point-cloud (LiDAR) simulator for
perception.

Fig. 11. Capture dynamics in DLR co-simulation.

The co-simulation framework developed at DLR
provides a powerful prototyping tool to perform
model/software/processor in the loop (MIL/SIL/PIL) tests.
With the on-going external mission-oriented projects, this
tool is useful to achieve DLR contributions.

VI. CONCLUSION

This paper first presents the status and some of the open
problems in the validation and verification (V&V) of optimal
control and machine-learning based algorithms, for motion
planning and global pose estimation respectively. The outlined
developments of a new optimal control methodology may pave
the way for provable robustness to given uncertainty in the
task parameters, as well as algorithmic simplicity for online
applicability, for constrained nonlinear programs relevant to
robotic control tasks. The developments in the LIDAR-based
global pose estimation provide feasible and efficient V&V
methods, based on state-of-the-art standards, of the relative
algorithms. Results are being generated with the OOS-SIM
experimental facility at the DLR, to validate the sim2real
transfer. Finally, the tool developed at the DLR with the model-
based design approach, brings robot systems on the same
level as GNC systems, in terms of V&V capabilities. These
capabilities are already being exploited in on-going mission
oriented projects, such as ESA’s RISE project.

The V&V task for orbital robots is an exciting field in full
development. Space missions with robotic systems will be-
come more and more of a reality in the close future and V&V
capabilities will play a fundamental role in their successful
realization. DLR aims to demonstrate the autonomous robot
technologies discussed above in close-future missions.
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