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Abstract—This study aims to experimentally validate the
principle of large-scale satellite swarm control using magnetic
field interactions generated by satellite-mounted magnetorquers.
This actuation is an attractive solution for the long-term forma-
tion maintenance of multiple satellites, and has mainly been
demonstrated for the two-satellite position control in a ground
testbed. However, when the number of satellites N increases to
more than three, this system contains fundamental challenges:
1) underactuation, 2) nonholonomic constraints, 3) scalability
issues, and 4) high computational burden. To overcome these
constraints, one practical solution is time-integrated current
control, where the actuator outputs are time-varying, ensuring
that the average acceleration matches the commanded value. We
numerically and experimentally investigate two key aspects via
time-varying magnetic actuation: (1) enhanced controllability
on averaged dynamics with the theoretically guaranteed error
bound, and (2) decentralized current management. Our primary
application is the distributed space antennas through the in-
tegration of autonomous robotics technology and phased-array
antenna systems. To emulate the orbital dynamics as equivalently
as possible, we designed a ground-based experimental setup
using an air-bearing platform, where position control experi-
ments were conducted with custom-designed coils. This study
can work as a proof of concept along with the tutorial paper on
electromagnetic spacecraft control.

Index Terms—distributed space system, satellite swarm an-
tenna array, small satellite, electromagnetic formation flight,
multi-agent system, nonholonomic system

© Interstellar Technologies Inc.

(a) Distributed space antenna studied in [1,
2, 3].

(b) Ten two-axis magnetorquers mounted
on a linear air track.

Fig. 1: Distributed space antenna concept and experiment
testbed of time-integrated magnetic interaction control using
electromagnetic force and torque simultaneously.

I. INTRODUCTION

This study aims to experimentally validate the principle
of large-scale satellite swarm control using magnetic field



interactions. Large-scale space structures have plenty of ad-
vantages for the scientific and commercial community. In par-
ticular, large space antennas enable high data rates with small
ground terminals and offer resilient cellular-band communi-
cation. Since launch vehicle size constraints pose significant
challenges for larger antennas, distributed space antennas in
Fig. 6d are studied in [1, 2, 3] where multiple satellites form
a virtual space antenna. This payload distribution enhances
redundancy and mission flexibility while reducing thermal
structure requirements.

The magnetic interaction generated by satellite-mounted
magnetorquers (MTQs) is an attractive solution for the long-
term formation maintenance of satellite swarms. This actu-
ator has been widely used on Earth-orbiting satellites for
attitude control. Electromagnetic Formation Flight (EMFF)
extends this concept to relative position control, and technical
demonstrations have been conducted on the ground and in
microgravity [4, 5, 6, 7, 8, 9]. Previous studies [2] show the
feasibility of distributed space antenna using MTQs under
unstable orbital dynamics in low Earth orbit.

However, when the number of satellites N increases to
more than three, the magnetic field system contains funda-
mental challenges: 1) underactuation, 2) nonholonomic con-
straints, 3) scalability issues, and 4) high computational bur-
den. Previous technical demonstrations have primarily been
shown in two-satellite systems, focusing on relative distance
control. , thereby overcoming the fundamental limitations
and enabling more flexible control. The first constraint arises
from a fundamental lack of control over degrees of freedom.
Even if each satellite has a three-axis magnetic coil and
applies direct current (DC) [4, 10, 11, 12, 13, 14, 15, 16],
the total number of control inputs is limited to 3N . This
is insufficient to control the full 6N degrees of freedom
instantaneously. Previous studies have introduced additional
attitude control resources such as a three-axis reaction wheel
(RWs) and minimizing the unintended electromagnetic torque
[14, 17, 18]. For large-scale satellite systems, however, reduc-
ing the mass of these additional systems allows for greater
resource allocation to other mission components, thereby
improving mission efficiency. The second challenge is the
nonholonomic constraint due to angular momentum conser-
vation. MTQ control can not control all absolute positions and
attitudes of multi-agents from the viewpoint of a holonomic
and nonholonomic system, i.e., the entire linear and angular
momentum remains unchanged. This is another reason most
previous studies of EMFF assume that all satellites have RWs;
all states in this system cannot be converged into the desired
state by smooth state feedback [19]. The magnetic outputs
must strictly satisfy this at every moment, and it must be
explicitly accounted for in control design. EMFF requires
complicated control scheme specific to the system because
nonholonomic mechanical systems become uncontrollable by
linearization; it is worth noting that the angular momentum
exchange is available with the geomagnetic field in low Earth
orbit, which relaxes this constraint. For these two problems,
linearization leads to uncontrollability. Then, traditional linear

control theory is not applicable without a proper strategy.
The third challenge concerns scalability, as each satellite
is affected by the magnetic fields of all other satellites.
Even though electromagnetic forces decay with the fourth
power of distance, satellites experience undesired magnetic
disturbances from non-cooperative neighbors.

To overcome these constraints, one of the practical solu-
tions is a time-integrated current control: the actuator outputs
are time-varying such that the average acceleration matches
the commanded value. A previous study proposes a time-
scheduled switching topology [10]: only two certain satellites
generate DC magnetic interaction during a specific interval.
A dipole polarity switching method [11] periodically changes
dipole signs primarily for removing the Earth’s magnetic field
interaction. This technique can be extended to a solution
to our problem in principle. Trajectory-level control, where
satellites dynamically adjust their positions or orientations
to generate virtual nonholonomic effects [20]. Another sys-
tematic approach is sinusoidal modulation of current and
alternating current (AC) methods [5, 6, 7, 8, 9, 17, 21, 22, 23],
adjusting both the phase [6, 17, 21] and frequency [7, 8,
9, 17, 23]. This naturally separates the strong coupling of
the multiple satellite’s and earth’s magnetic interaction on
averaged dynamics [7, 8, 17, 23] and offers control over many
variables can be used to optimize the electromagnetic torque.
A previous study investigated the time-averaging approach
combined with this approach [24].

We numerically and experimentally investigate two key
aspects via time-varying magnetic actuation: (1) enhanced
controllability with the theoretically guaranteed error bound,
and (2) decentralized current management. We use alternat-
ing current (AC) methods to generate time-averaged forces
and torques. In this approach, the N satellite system is
partitioned into multiple M≪N satellite groups, and inter-
group interactions are approximately decoupled on average.
While our experiments focus on the case of M = 2, its
extension to M ≥ 3 is possible through integration with the
previous framework [25], leading to improved power-optimal
control. Note that we only focus on the actuator-level time-
varying control; Since small-time local controllability [26] is
satisfied by EMFF [20], this guarantees asymptotically steer
arbitrary states to any desired state due to the existence of
continuous periodic feedback laws [27] and piecewise analytic
feedback laws [28]. In this study, however, we omit this
trajectory-level time-varying control since the accessibility
of the Earth’s magnetic field enables the actuator-level time-
varying control (please refer to [20] for the trajectory-level
study in EMFF). We demonstrate the feasibility of cooperative
control in magnetically actuated satellite swarms through
numerical simulations and experimental validation.

II. PRELIMINARY, PROBLEMS AND OUR SOLUTION

This section introduces the magnetic field interaction based
satellite control. Our mathematical notation about vector and
coordination are follow: Let {a} be defined as basis vector
of an arbitrary frame (A) such that {a} =

{
aT
x ,a

T
y ,a

T
z

}T



and we define ap component of an arbitrary vector p ∈ R3

in this frame, i.e., p = {a}⊤ap = {b}⊤bp = {b}⊤CB/Aap
where CB/A ∈ R3×3 is the coordinate transformation matrix
from frame (A) to (B).

A. Electromagnetic Force and Torque Model and Kinematics
Command Modification for Nonholonomy

This subsection introduces the exact magnetic interaction
model (near-field model) and its approximation (far-field
model).

Assumption 1. We model the 1-axis coil as a circular air-
core coil and define its dipole moment as µa ≜ µa0n and
µa0 ≜ NtAca where the number of coil turns Nt, the area
enclosed by the coil A, the current strength ca(t), and n is
the unit vector perpendicular to the plane of the coil.

Then, the exact magnetic field model B(r) [T] [14, 29] using
the well-known Biot-Savart law is

B(r) =
µ0c

4π

∮
dl × r̂

|r⃗|2
∈ R3.

where the magnetic permeability µ0, the coil element dl ∈
R3, and the distance between coil elements r ∈ R3. Then,
the electromagnetic force and torque experienced by the bth
1-axis coil due to the magnetic field generated by the ath
1-axis coil is

f coilb←a =
µ0µa0µb0

4πA2

∮ [∮
erab

× dla
r2ab

]
× dlb

τ coilb←a =
µ0µa0µb0

4πA2

∮
Rb ×

[∮
erab

× dla
r2ab

]
× dlb.

where erab
is unit vector along with rab,

rij = sij + Ci/jRj −Ri, Ri(φ) = [Ri cosφ,Ri sinφ, 0]
⊤

and dli(φ) = (dRi(φ)/dφ)dφ. Figure 2a provides an overview
of each of these parameters. We assume the satellite specifi-
cation to extend the above concept:

Assumption 2. All n satellites have the identical circular
triaxial air-core coils, such that this defines the jth dipole
moment of the multi-layer coil µj(t) ∈ R3 [Am2] at time t:

µj(t) = {b}⊤NtA

cjx(t)cjy(t)
cjz(t)

 ≜ {b}⊤
µjx(t)
µjy(t)
µjz(t)

 (1)

where the current strength cj(x,y,z)(t) along with x, y, z-axis
in jth body-fixed frame.

Then, the electromagnetic force and torque on the j-the
satellites due to the neighbor satellites Nj is[

fj

τj

]
=

∑
k∈Nj

[
fj←k

τj←k

]
=

∑
k∈Nj

∑
a=

(x,y,z)

∑
b=

(x,y,z)

[
f coil
j(a)←k(b)

τ coil
j(a)←k(b)

]
(2)

This model includes a circulant integration term that incorpo-
rates the relative position, relative attitude, and coil geometry,
and a notable drawback is the heavy computational load.

74th International Astronautical Congress (IAC), Baku, Azerbaijan, 2-6 October 2023.  

Copyright ©2023 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-23-C1, IPB, 11, x77992                          Page 3 of 9 

�̈� + 2ω𝑜�̇� − 3ω𝑜
2𝑥 =

𝐹𝑥
𝑚𝑐

 

�̈� − 2ω𝑜�̇� =
𝐹𝑦

𝑚𝑐

(1) 

�̈� + ω𝑜
2𝑧 =

𝐹𝑧
𝑚𝑐

 

In equation (1), mc represents the mass of the chaser 

satellite, wo denotes the orbital frequency given by ω𝑜 =

√μ𝑔/𝑅𝑜
3 , where μ𝑔  is the geocentric gravitational con-

stant, and 𝑅𝑜 is the satellite's orbital radius. 

Third, we consider attitude dynamics for a satellite 

equipped with a reaction wheel (RW): 

𝐽 ⋅
𝑑ω

𝑑𝑡
+ ω × (𝐽 ⋅ ω + ℎ𝑅𝑊) = −τ𝑅𝑊 + τ𝑑 (2) 

𝑑

𝑑𝑡
ℎ𝑅𝑊 = τ𝑅𝑊 

where 𝐽 is the moment of inertia, ω is the aircraft angular 

velocity, ℎ𝑅𝑊  and τ𝑅𝑊  are the angular momentum of 

RW and torque, and τ𝑑 is the disturbance torque. 

Finally, we present Figure 2 illustrating the satellite 

model utilized in this paper. The satellite model assumed 

for this study is characterized by a uniform coil configu-

ration, with its center of mass coinciding with the center 

of the satellite. 

 

2.2 Electromagnetic force and torque model at short dis-

tances. 

This section introduces the electromagnetic force and 

torque model employed in this study. We consider a sce-

nario where currents, represented as 𝑖𝑖 and 𝑖𝑗, are applied 

to two coils: coil i, which consists of 𝑁𝑖 turns, and coil j, 

which consists of 𝑁𝑗  turns. In this context, the electro-

magnetic force experienced by coil j due to the magnetic 

field generated by coil i can be precisely expressed by 

equation (3), derived from the Biot-Savart law. This 

model is referred to as the Near Field Model [29]. 

𝐹𝑖𝑗 =
μ0𝑁𝑖𝑖𝑖𝑁𝑗𝑖𝑗

4π
∮(∮

𝑟𝑖�̂� × 𝑑𝑙𝑖

𝑟𝑖𝑗
2 ) × 𝑑𝑙𝑗 (3) 

In this case, μ0 represents the magnetic permeability, 

𝑑𝑙 denotes the coil element, and 𝑟𝑖𝑗  signifies the distance 

between coil elements. Figure 3 provides an overview of 

each of these parameters. 

 
Fig. 2. Models with evenly spaced placement of the 3-

axis coils. In this paper, we refer to satellite 1 as the blue 

one and satellite 2 as the red one. 

 

 
Fig. 3. Two loop currents and definition of parameters. 

 

It is also known that when a current flows through a 

coil, it not only generates electromagnetic force but also 

induces electromagnetic torque. Specifically, coil j expe-

riences electromagnetic torque due to the magnetic field 

generated by coil i, and this phenomenon is described as 

follows [27]: 

τ𝑖𝑗 =
μ0𝑁𝑖𝑖𝑖𝑁𝑗𝑖𝑗

4π
∮𝑅𝑗 × (∮

𝑟𝑖�̂� × 𝑑𝑙𝑖

𝑟𝑖𝑗
2 ) × 𝑑𝑙𝑗 (4) 

Next, we will explain the matrix definitions necessary 

for deriving the control current calculation method based 

on the Near Field Model. To begin with, regarding the 

electromagnetic force and torque, the circulant integra-

tion term in equation (4) can be calculated as a 3×1 ma-

trix, incorporating coil geometry, satellite relative dis-

tance, and satellite attitude. We will denote this matrix as 

the I and J matrix. 

 
𝐼𝑖𝑗 = ∮(∮

𝑟𝑖�̂� × 𝑑𝑙𝑖

𝑟𝑖𝑗
2 ) × 𝑑𝑙𝑗 

𝐽𝑖𝑗 = ∮𝑅𝑗 × (∮
𝑟𝑖�̂� × 𝑑𝑙𝑖

𝑟𝑖𝑗
2 ) × 𝑑𝑙𝑗 

(5) 

In this case, the electromagnetic forces and torques be-

tween the satellites can be represented using equation (5) 

and expressed using the I and J matrices as follows. 

𝐹𝑖𝑗 =
μ0𝑁𝑖𝑖𝑖𝑁𝑗𝑖𝑗

4π
𝐼𝑖𝑗 (6) 

 

τ𝑖𝑗 =
μ0𝑁𝑖𝑖𝑖𝑁𝑗𝑖𝑗

4π
𝐽𝑖𝑗 (7) 

  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
   

  

  
 

  
 

 
 

 
 

 

 

(a) One-axis coil interaction (b) 10 samples for geometry learning

Fig. 2: a) Overview of the circulant integration [29], b) Coil
geometry learning presented in subsection III-C

Then, a “Far-field” model [14] provides a computationally
friendly approximated magnetic field. We define the relative
vector sij ∈ R3 between the geometric center of two coils,
and the position vector Ri ∈ R from the geometric center
into dli such that rij = sij − Ri. We assume the size of
the coil loop is much smaller than the relative distance, i.e.,
|Ri| ≪ |sij |. Then, we get

|Ri| ≪ |sij | ⇒
1

|r|
≈ 1

|sij |
+
sij ·Ri

|sij |3

This approximation convert the multi-layer coil derives dipole
model, i.e., jth magnetic moment µj(t) ∈ R3 [Am2] at time
t and its magnetic field Bk (µk, rjk) ∈ R3 [T] are

Bk(µk, rjk) =
µ0

4πd3jk
(3Mker − µk)

where µk is in Eq. (1), Mk = µk · er, djk = ∥rjk∥, and
er = rjk/djk. This model is accurate if the relative distance
sij exceeds around twice the diameter of the coil, i.e., 2Ri

[13]. This also simplifies the magnetic field interaction model,
the electromagnetic force and torque exerted on the j-th
agent by the k-th one as fj←k (µj,k, rjk) = ∇(µj ·Bk) and
τj←k (µj,k, rjk) = µj ×Bk where

fj←k =
3µ0

4πd4
((µk · µj − 5MkMj)er +Mkµj +Mjµk) .

(3)
We derive the command value of electromagnetic force
and torque that satisfies angular momentum conservation
using “EMFF Kinematics” [20, 24, 30]. We consider the
n satellite with 3-axis MTQ and assume that m ∈ [1, n]
satellites are equipped with 3-axis RWs. We define the
tangent space of angular momentum conservation S(n,m) ∈
R(6n+3m)×(6n+3m−3), i.e., S(n,m) ∈ Null Space(A(n,m))



S/C 3 

S/C 1 

S/C 2 

S/C 4 

S/C 5 

AC Frequency ω
f1

 Group

AC Frequency ω
f2

 Group

AC Frequency ω
f5

 Group

(a) Multi-leader guidance [25] (b) Token-based maneuvering [10, 24]

Fig. 3: Examples of decoupled maneuvering (a) Multi-leader
guidance protocol: Five satellites are divided into three groups
with three AC frequencies: ωf1, ωf2, and ωf5), (b) token-
based decoupled maneuvering with AC modulation: satellites
operate in a sequence S = {S1, S2, ...SN} where Si is the
set of active vehicles during time interval [ti, ti+1).

where A(n,m) ∈ R3×(6n+3m)

n∑
j=1

(
mjrj ×

drj
dt

+ Ij · ωj

)
+

m∑
j=1

hj = L ⇔

A(n,m)

 ṙiωb

ξb

 =

 m1[r
i
1]×, · · · ,mn[r

i
n]×,

CI/B1J1, · · · , CI/BnJn,
CI/B1 , · · · , CI/Bm

 ṙiωb

ξb

 = 0

where ξb ∈ R3m, and ξ
bj
j = h

bj
j − 1

mL
bj . The command

values based on these fields could be generated by MTQ.
Using these formulation, we can construct the nonlinear non-
convex optimization problem OPT DC to allocate to achieve
simultaneous control:

OPT DC : DC-based Optimal Dipole Allocation Problem
min. J(µ1(x,y,z), . . . , µn(x,y,z), χ)

s.t. {fcj , τcj} =
∑
k ̸=j

{fj←k, τj←k} for j = 1, . . . , N

where J ∈ R is arbitrary evaluation function with arbitrary
parameters χ.

B. Time-Integrated Control for Underactuated Allocation,
Scalability, and Computation

This subsection introduces the time-integration current con-
trol to overcome the underactuation. We first demonstrate
the necessity of time-integrated current control to extend
controllability, i.e., simultaneously control both electromag-
netic force and torque. This is highlighted by the polynomial
formulations of the magnetic interaction [14, 24, 30], which
is helpful to check the availability of simultaneous control.
The far-field approximation in Eq. (3) and OPT DC can be
simplified to a multivariate bilinear system of polynomial
equations and results equivalent problem OPT Bilinear

DC :

OPT Bilinear
DC : DC-based Optimal Dipole Allocation Problem

min. J(µ1(x,y,z), . . . , µn(x,y,z), χ)

s.t. fcj(x,y,z), τcj(x,y,z)︸ ︷︷ ︸
= Const. command input

=

3∑
k=1

n∑
l=1
(l ̸=j)

3∑
m=1

µjk︸︷︷︸
Variable

Cjklm︸ ︷︷ ︸
Const.

µlm︸︷︷︸
Variable

where Cjklm ∈ R is the constant value associated with the
state of the system. Since this problem includes 3n variables
and 6n-6 polynomials, DC-based magnetic field control can
generate arbitrary electromagnetic forces or torques for n
satellites or achieve simultaneous control only for two satel-
lites. This is the one reason that most previous studies (which
even included AC-based EMFF) used only electromagnetic
force, considering torque as a disturbance.

1) Time-Integrated Control of Alternating Current

We next consider the AC method to explain how the time-
integrated current control expands the controllability by AC
modulation technique. We assume that jth satellite’s MTQ
for j ∈ [1, n] are driven sinusoidal with angular frequency
ωj[rad/s]. Here, we assume that a, bth dipole and the time-
varying electromagnetic force and torque are written down

µa(t) = µamp
a sin (ωat+ θ) , µb(t) = µamp

b sin (ωbt)

fb←a, τb←a(t) = (κ1(t) + κ2(t))f , τ (µamp
a ,µamp

b , rba)

κ1(t), κ2(t) = ±1

2
cos ((ωa ∓ ωb) t+ θ)

where amplitudes µampj ∈ R3 and the phase differences θ ∈
R3 that are constant during specific one cycle T . This shows
f , τ take 0 in first-order averaged dynamics and the different
angular frequencies’ agents do not interact with each other.
µj(t) = µjDC(t) +

∑
k∈Nj

µsin
j sinωjt+ µcos

j cosωjt

favgj←k ≜
1

2

∑
k ̸=j

{
f
(
µsin
k , µsin

j , rjk
)
+ f

(
µcos
k , µcos

j , rjk
)}
.

After these notations, the AC-based current control derives
favgj and τavgj are ψ = favgj←k. We can also simplify

OPT Bilinear
AC : AC-based Optimal Dipole Allocation Problem

min. J
(
µsin
1(x,y,z), . . . , µ

sin
n(x,y,z), µ

cos
1(x,y,z), . . . , µ

cos
n(x,y,z), χ

)

s.t.



fcj(x,y,z), τcj(x,y,z)︸ ︷︷ ︸
= Const. command input

=
∑
k ̸=j

{
favgj←k, τ

avg
j←k(x,y,z)

}

=

3∑
k=1

∑
l=1
(l ̸=j)

3∑
m=1

µsin
jk︸︷︷︸

var.

Csin
jklm︸ ︷︷ ︸

const.

µsin
lm︸︷︷︸

var.

+ µcos
jk︸︷︷︸

var.

Ccos
jklm︸ ︷︷ ︸

const.

µcos
lm︸︷︷︸

var.


where j = 1, . . . , N , Csin

jklm ∈ R and Ccos
jklm ∈ R are

also the constants associated with the state of the system
for sin and cos. This problem includes 6n variables and
6n-6 polynomials. A system of k polynomial equations in
k variables generally gave d =

∏k
l=1 dl isolated solutions,

where dl denotes the highest degree of the lth equation and
dl = 2 for our case. Then, equality constraints in OPT Bilinear

AC

potentially have 26n−6 solutions and 6 free dipole moments.
Since there are more variables than equations, simultaneous
control may well be realized even for n satellites. Note
that these solutions can include not physically implementable
solution, i.e., “solutions at infinity” [31].



(a) 1U MTQ model. (b) Formation and attitude control
setup.

(c) Distance control for three MTQ experimental testbed.

Fig. 4: Two type custom-built two-axis magnetorquers and
experimental overview for formation and attitude control.

2) Practical Time-interated Maneuvering
It is worth noting that the principle of this subsection

may well be extended to an arbitrary time-integrated control
framework, which is especially suitable for practical imple-
mentation. This extension is future work.

III. EXPERIMENTAL REQUIREMENT

We provide a brief overview of the experimental setup. As
illustrated in Figs. 6f, 4b, and 4c, the testbed consists of a
1.5 m linear air track (Eisco, PH0362A) with an associated
air blower (Eisco, PH0363A), and a single-axis air bearing.
The white reflectors for distance sensing are placed on MTQs
and both ends of the linear track in the appropriate orientation.
The custom-built magnetorquers (MTQs) are mounted on
100g gliders that move along the linear track, while some
MTQ is installed on the air bearing, allowing for frictionless
rotation about a single axis. The mechanical constraints of
the linear track are accounted by ensuring that the net force
acts along the track’s direction. This setup enable a partial
validation of the experimental feasibility of 6-DoF control
using a combination of the air bearing and linear air track.
For given the constant target position pd ∈ RN , such as truss
formation, and target velocity vd = ṗd = 0, we define the
error states between the perturbed system and the unperturbed
target states, i.e., pe = p−pd and ve = v− vd. Then, a given
fixed graph G define edge states of the agents on ground
experiment, epe

= E⊤pe, eve = E⊤ve, and ėve = E⊤(u+d).
Its state equation is

d

dt

[
eve
epe

]
≜

[
−E⊤Kd −E⊤Kp

I O

]
︸ ︷︷ ︸

Agnd

[
eve
epe

]
+

[
E⊤d
0

]
(4)

A. Time Constant Requirement for Orbital Operation

This subsection describes the time constant requirement
of the ground experiment that is consistent with on-orbital
operation. Along with the state estimation period Te, two key
time scales for our system arise: the control input update pe-
riod Tc, and the averaging duration Tavg. We distinguish two
major regimes for time-scale design: the initial transient phase
and the steady-state phase. Attitude control of a monolithic
satellite or satellite formation control using thrusters can often
be modeled as a single-input single-output (SISO) system.
In contrast, formation control based on magnetic interactions
inherently relies on inter-satellite coupling, causing the overall
system time constant to depend on the number of satellites
N .

1) Relative Orbital Dynamics in Earth Orbit
We first introduce the relative orbital dynamics of the

orbiting satellites. This subsection mainly uses an orbitally
fixed coordinate system O system whose basis is

ox = nor(r), oy = oz × ox, oz = (r× ṙ)/∥r× ṙ∥

where r ∈ R3 is the position vector from the Earth’s center.
We define the relative position of the j-th satellite from
the kth satellite as rjk = rj − rk = [xjk; yjk; zjk]. Then,
linearization around the reference orbit yields the relative
motion dynamics in {O} [32, 33]:

ẍ− 2ωxy ẏ − 3ω2
xyx−

4ω2
xy

c2−/sJ2

(
2x+

ẏ

ωxy

)
= c+ux

ÿ + 2ωxyẋ = c−uy, z̈ + ω2
zz = h(·) + uz

where ux,y,z ∈ R are input including disturbance, x = c+x,
y = c−y c± =

√
1± sJ2

, sJ2
(iref) ≈ 1e−4, h(·) =

2lzωz cos(ωzt+ θz), ϵ2 ≈ (3+5e−4)ωxy , ωxy = c−
√
µ/r3ref

and ωz and lz are. Here, integrating this equation derives the
analytical solution:xjk(t)yjk(t)
zjk(t)

 =

 2C1(0) + rxy sin (ωxyt+ θxy)/c+
C4(0) − ϵ2C1(0)t+ 2rxy cos (ωxyt+ θxy)/c−

(rz + lzt) sin (ωzt+ θz)


where averaged J2 relative orbital parameters: drift motion
coefficient C1 and relative orbit centrer coefficient C4

C1 =
c+
c2−

(
2x+

ẏ

ωxy

)
, C4 =

1

c−

(
y − 2ẋ

ωxy

)
.

This analytical solution shows that the relative orbital motion
includes the drift and periodic terms. These drift terms cause
the control loss of MTQ based on its distance-based nature.
Then, we apply the uy = − for the low input constraint and
its closed-loop system is[
ė1
ė4

]
=

[
−kA

2 Le O
ϵ2
2

(
I − k1γ

2 Le

)
−γkA

2 Le

]
︸ ︷︷ ︸

Aorb

[
e1
e4

]
− k0

[
E⊤Dy

E⊤Dx

]

(5)
where e1 = E⊤[−2C1], eC4

= E⊤[C4] using the associated
the incidence matrix that caputure the satellites coordination,



(a) Initial transient phase.
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(b) Steady-state phase.

Fig. 5: Two major regimes and guidelines for time-
scale design: a) Tc = (kλmaxnsafe)

−1, b) Tc =

min
{

1
2nsafefd

), 1
kλmaxnsafe

}
, Tavg (kλ2)

−1

k0 is averaged J2 dynamics constant as k0 = 2c+/(ωxyc−).
Therefore, we mainly consider this agreement protocol, i.e.,
ẋ = −kLx, and the analytical solution is

x(t) = e(−kLt)x(0)︸ ︷︷ ︸
Initial transient term

+

∫ t

0

e(−kL(t−τ))d(τ) dτ︸ ︷︷ ︸
Steady-state error term

(6)

where e(−kLt)x(0) =
∑N

i=1

(
v⊤i x(0)

)
e−kλitvi and vi ∈ RN

is the eigenvector corresponding the eigenvalues λi ∈ R
that holds 0 = λ1 < λ2 ≤ . . . ≤ λN under the con-
nected conditions. During the transient phase, high-frequency
components associated with λN dominate. From a signal
processing perspective, aliasing occurs when the sampling
frequency is too low to capture these high-frequency modes,
causing distortion. To ensure stability and prevent aliasing,
the control update period must satisfy Tc ≤ 1/(kλmaxnsafe),
where k is the feedback gain and nsafe ∈ N+ is a safety
margin. To limit λmax, we made the following assumption:

Assumption 3. Each satellite interacts with at most ∆ others.

This can be realized by centralized grouping, such as [3],
and derives λmax ≤ 2∆, e.g., ∆ = 6. After transients decay,
low-frequency modes and disturbances prevail. If the distur-
bance has a known fundamental frequency fd, the Nyquist
criterion gives Tc ≤ 1

2fd
. If the spectrum is broadband or

unknown, a conservative bound is

Tc ≤ min

(
1

2fd
,

1

kλmaxN

)
≤ min

(
1

2fd
,

1

k∆N

)
.

For time-scale separation, the system evolves on a finer scale
y(t, τ), and the averaged dynamics are defined as

dx

dt
= −kLx =

∫ T

0

dy

dτ
(t, τ)

dτ

T
⇒ T ≪ 1

kλ2
(7)

To validate this approximation, the averaging window must
be much smaller than the slowest mode’s time scale. To
partially ensures dynamical equivalence between the ground
testbed and the on-orbit system, we assume that there exist
the coordinate transformation Θ ∈ R2n×2n:[

e1
e4

]
≜ Θ

[
eve
epe

]
=

[
Θ11 Θ12

O Θ22

] [
eve
epe

]
s.t.

ΘAgnd

β
= AorbΘ, β ≈ ∥Θ11E

⊤d∥∞
∥k0E⊤Dy∥∞

, τ ≜ βt

(8)

where Agnd is Eq. (4) and Aorb is Eq. (5) where β is the
disturbance ratio.

Theorem III.1. There exists a coordinate transformation
matrix such that

Θ11 = P (Le) =

r∑
m=0

αmL
m
e , α0 ̸= 0 (9)

and Θ12 and Θ22 in Eq. (11) for the closed-loop system
applied a second-order Laplacian gain controller

u = −βkA
2

(
kv −

βkA
2

)
L2(p− pd)− kvL(v − vd) (10)

Proof: We temporarily define u = −Kp(p − pd) −
Kd(v − vd). The relationship ΘAgnd = βAorbΘ in Eq. (10)
is equivalent to the four block relations

(i) −Θ11E
⊤Kd +Θ12 = βA11Θ11

(ii) −Θ11E
⊤Kp = βA11Θ12,

(iii) Θ22 = βA21Θ11,

(iv) 0 = β
(
A21Θ12 +A22Θ22

)
.

Since Θ11 need to be commute with Le, we choose it as
invertible polynomial function P (Le) in Eq. (9) and this
derives Θ12 and Θ22 as

Θ12 = Θ11

(
E⊤Kd − βA11

)
, Θ22 = βA21 Θ11 (11)

where A11 = −kA

2 Le and A22 = −γkA

2 Le. Substituting the
above into (ii) and cancelling the commuting, nonsingular
Θ11 condition gives

β2A2
11 + βA11E

⊤Kd + E⊤Kp = 0 (12)

Here, constraining E⊤Kp ∝ Le i.e. degree 1, forces kp = 0
that results absence of proportional term. To avoid this, we
choose E⊤Kd = kvLe and E⊤Kp = kpL

2
e such that(

β2k2A
4

− βkAkv
2

+ kp

)
L2
e = 0 ⇒ kp =

βkA
2

(
kv −

βkA
2

)
.

As a result, we confirm a second-order Laplacian gain Kp ∝
L2
e in Eq. (10).

Multiplying Θ and β−1 from left of Eq. (4) yields

d

d(βt)

[
e1
e4

]
= Aorb

[
e1
e4

]
+

1

β

[
Θ11E

⊤d
0

]
Then, we select any invertible Θ11 = P (Le) and kv > βkA/2
and this derives kp and Θ12,22, dependently. The time-scale
transformation tgnd = torb/β scales command updata period
Ts and coordinate transformation Θ map ground-frame errors
to orbital-frame errors one-to-one.

2) Attitude Controller Design in Earth Orbit
The main disturbance torques for attitude motion are placed

on two frequency bands: the orbital one ωo ∼ 1.1e−3 rad/s,
e.g., the residual magnetic and gravity tilt torque, and user-
defined dipole frequencies ωf ∈ ωfs = [ωf , ωf ]. In this
study, the majority of attitude control is assumed to rely
on interactions with the geomagnetic field, effectively decou-



pling satellites from each other. Note that this torque model
is often used to realize a cross-product attitude controller
τMTQ = −[Be]×dDC with geomagnetic field Be. In practice,
we may well account for the number of satellites for attitude
control, and this is a future work.

B. Experimental Hardware Design

We summrize the sequential MTQ parameter selection to
decide the specification of designed coils in Fig 4. W consider
the decision parameters of coil design are the following four
Multilayer coil and others became dependent variable as a
result of the design process:

• Inner and outer coil diameters D,D [m]. Multilayer coil
diameter Dcoil = (D +D)/2

• Circuit voltage Vcir [V]
• Upper current cwire [A]
• Coil height Hcoil [m]

To evaluate the feasibility of the designed solution and
approximation of the near-field model, we first conduct ex-
periments where the long-range magnetic field model is valid.
Subsequently, we assess the validity of the algorithm using
the near-field model. Therefore, it is a prerequisite that exper-
iments can be performed under the far-field approximation.
The coil design requirement along with our values are the
following four.

1) Disturbance force ad [N/kg]: The micro-gravity due
to the small distortion of the linear air track that is
estimated ≈ 0.01◦ and thus |ad| ≈ 2(9.8 sin(0.01◦)) ≤
4e−3. Note that this ad allows to move adt

2/2 ≈
0.2−0.8 [m] within 10–20 seconds at a certain distance
in a microgravity environment

2) Size constraint: Feasibility of dipole approximation
on Eq. (3) for the coil diameter Dcoil and operation
distance r. the target distances and initial distances
rd, r0 [m] should be larger than 2.5Dcoil. The upper
limit of the coil height was estimated to be A

Target & initial distances: rd = 3Dcoil, r0 = rd+0.1

3) Maximum weight mMTQ: The linear air tracks can
withstand mMTQ ≈ 1.3 from measurements.

4) Electric power balance: Discrete drive voltage V cir and
corresponding mass of LiPo battery.

We find the appropriate wire to satisfies these requirements
based on the following material information kΩ/kg [Ω/kg],
kΩ/m [Ω/m], cwire[A], Dwire [m] We derive the dependent
coil parameters for the design variables Dcoil and circuit
voltage V cir [V] by the following. At first, we calculate the
1-axis coil resistor. Ωcoil = min(V cir/cwire,mcoilkΩ/kg) such
that the maximum current is lower than cwire and second is
the mass constraint to satisfy mcoil ≤ mcoil. Next, we derives

The number of wiring [-]: Nt = Ωcoil/kΩ/m/(πDcoil)

Maximum dipole [A/m2]: µ = π(Dcoil/2)
2Ntcwire

Thickness of coil wire [m]: tcoil = Nt/(Hcoil/Dwire)

Parameter Optimization Prototyping
satellite size 2asat 11cm 10cm

coil diameter 2acoil 7.5cm 7.5cm
satellite mass msat 0.536kg 0.336kg

coil mass m3coil 0.103kg 0.120kg
TABLE I: Distributed antenna design exmaples [2]

Finally, we calculate the optimization problem for maximiz-
ing the acceleration.

D∗coil, V
∗
cir = arg min

Dcoil,Vcir∈R

µ2

mcoil

s.t.



mcoil =
Ωcoil(V, cwire, kΩ/kg,mcoil)

kΩ/kg
≤ mcoil

F (d0) =
1

2

3µ0

2π

µ2

d4
≥ ad

tcoil ≤
Dcoil

6

We develop the MTQ for the iron/air core coil and for three
materials: copper, polyester, and tin-plated copper. We applied
a polyester-enameled copper wire (PEW), and UL1070 with
a thickness of about 0.5-2 mm was selected as a candidate
for ease of design. This custom-made experience reveals the
suitable application for each material and provides lessons
learned for packing into the 1U-sized satellite.

Remark 1. Combining the previously developed comprehen-
sive system design using non-convex optimization [2] confirms
that the designed cubic MTQ in Fig. 4a satisfies long-term
formation-keeping constraints to achieve a 1U-sized satellite
swarm for low-Earth orbit (LEO) communication. Table ??
shows the derived optimal specifications of each axis coil.
The power electronics comprise a lithium-polymer battery
(800mAh, 35.6g) and a circuit (40g). However, micro-gravity
on the linear air track is much larger than orbital ones, and
this model could not cope with it. We evaluate the magnetic
interaction system in an equivalent system in Eq. (8).

C. Learning-based Coil-Specific Geometry Approximation

We design an approximate exact magnetic field model
using a multilayer perceptron (MLP) model that captures coil-
specific geometric features and calculates in real-time during
the control experiment. The j-th electromagnetic force and
torque due to the magnetic field generated by the kth satellite
in Eq. (2)[
afj←k
aτj←k

]
=

µ0

4πA2

[
aIj←kx

aIj←ky
aIj←kz

aJj←kx
aJj←ky

aJj←kz

]
(aµk ⊗ aµj)

where aIj←kx
= [aIjx←kx

, aIjy←kx
, aIjz←kx

] ∈ R3×3 and
Ijx←kx =

∫ θ=2π

θ=0

[∫ φ=2π

φ=0

erj←k
× dlkx

r2j←k

]
× dljx

Jjx←kx =

∫ θ=2π

θ=0

Rjx ×

[∫ φ=2π

φ=0

erj←k
× dlkx

r2j←k

]
× dljx .

(13)



This circulant integration term includes the relative position,
relative attitude, and coil geometry. Since an obvious draw-
back is a heavy computational load, we approximate these
coil-specific geometry terms using a multi-layer perceptron
(MLP). We first mention the sampling input and lable datas.
For the kth satellite, we define nk(x,y,z) as the unit vectors
along with x, y, z axes and derive coordinate frame Bk(x,y,z)

such that each nk(x,y,z) corresponds to its z-axis. Then the
transformation matrixes CA/Bk(x,y,z) ∈ R3×3 from the body-
fixed frame Bk(x,y,z) to arbitrary frame A is given by

C
A/Bk(z,x,y) =

[
ank(x,y,z)

ank(y,z,x)

ank(z,x,y)

]
(14)

To reduce the sampling number, θ ≜ tan−1(r(2), r(1))

C
Dj←k(x,y,z)

/Bk(x,y,z) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 sgn(r(3))


(15)

As a result, our sampling data are stucked as follows:

x =


[dr

(1)
j←k;

dn
(1)
jz

]⊤

...
[dr

(Ns)
j←k ;

dn
(Ns)
jz

]⊤

 , y =


[dI

(1)
jz←kz

; dJ
(1)
jz←kz

]⊤

...
[dI

(Ns)
jz←kz

; dJ
(Ns)
jz←kz

]⊤


where Ns is the number of samples. Our MLP represents the
functional mapping from given inputs x into some outputs
f(x,θ) such as a (L+1)-layer neural network and we train to
minimize the squared-error loss function:

θ∗w, θ
∗
b = argmin

Ns∑
j=1

(
f
(∥∥∥y(j)⊤ − ŷ(x(j),θ)⊤

∥∥∥))
ŷ(x,θ) =WL+1ϕ(· · ·ϕ(W 1x+ b1) · · · ) + bL+1

(16)

where the activation function ϕ(·) and the MLP paramters
θ include the MLP weights θw = W 1, . . . ,WL+1 and the
MLP bias θb = b1, . . . , bL+1, and ŷ is a estimated value.
The pseudocode is presented in Algorithm 1 in subsection B
in the appendix. We trained our MLP with approximately
one million samples in a supervised learning setting. The
network consists of two hidden layers with 256 and 128
units, respectively, each followed by Layer Normalization
and GELU activation. The output layer maps to the target
dimension directly. The loss function is the Smooth L1 loss.
We used the Adam optimizer with an initial learning rate of
3e−3, and applied cosine annealing learning rate scheduling to
improve convergence, Tmax = 3000, and a minimum learning
rate of 1e−18. The model was trained for 3000 epochs
with a batch size of 1024. The training process resulted
in convergence with a test loss of 4.11e−3 and a training
loss of 3.01e−3, and this close agreement implies acceptable
generalization performance. On the validation PC, the average
value of the cyclic integral with δθ = 1e−7 in Eq. (13)
decreased from 121.2ms to 29.5ms over one million iterations.
Furthermore, the standard deviation of the computation time
was reduced from 176ms to 11.3ms, indicating more stable
and consistent computation.
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Fig. 6: The predictions of the circulant integration term in
Eq. (13): The red solid line represents the ground-truth label
data obtained from direct computation, while the blue dashed
line indicates the values predicted by the MLP.

D. Experimental Validation

The designed experimental system consists of a micro-
controller (ESP32-C6), two Time-of-Flight distance sensors
(VL53L0X) for range measurements, and two current sensors
(INA228iso). The actuation system employs two-axis electro-
magnetic coils wound with UL1007 AWG20 wire. Each coil
has a diameter ranging from 16-18cm and a wire thickness of
approximately 1cm, with 120 turns per coil. The maximum al-
lowable current is 7A, based on a resistance of 2Ω and a 14V
battery supply. To address size constraints, the coil along the
axis perpendicular to the air-bearing platform is implemented
using a ferromagnetic-core design and calibrated to produce
an equivalent magnetic field in the horizontal plane. The basic
1D and 2D control experiments were conducted to enable
simultaneous control, and the distance sensor measurements
in Fig. 7 confirm the stable results around the target state.

APPENDIX

A. State Estimation on Experiment

We briefly notes the states estimation methods for readers’
benefit. The estimations of their distance are executed pe-
riodically by the VL53L0X sensor. Let Ts be defined as the
update period of command control values. As for the arbitrary
distance at time t = kTs, we obtain its approximated distance
d[kTs] by averaging previous Ns measurements:

d[kTs] =
1

Ns

Ns∑
ns=1

d

(
(k − 1)Ts +

ns − 1

Ns
Ts

)
where d(t) is the distance measured by the sensor at time
t. Here, the sensor on {FL} could measures the distances
with the origin, d0←FL

, and MTQ {FR}, dFR←FL
. While

the sensor on {FR} measures the distances with MTQ {FL},
dFL←FR

, and edge [0; 1.5; 0], de←FR
. To avoid the mutual

interaction of distance measurement, we set dFL←FR
= 0,

that results the approximated distance between MTQ {FR,L}
as yRL[kTs] ≈ dFR←FL[kTs]. Then, yL,R(kTs) are estimated
from redundant sensor information to satisfy the distance



(a) 18 MTQ formation/attitude control. (b) Distance control result.

(c) Position control result.

Fig. 7: Experimental results gained by Time-of-Flight ranging
sensor VL53L0X: a) 18 MTQ control numerical simulation,
b) Experimental distance control result for two MTQ on linear
track, c) Experimental position control results for two MTQs:
one on a linear air track and the other fixed on the ground.

constraint on the linear track:

yL(kTs) ≈
d0←FL[kTs] + (1.5− yRL[kTs] − de←FR[kTs])

2
,

yR(kTs) ≈
(d0←FL[kTs] + yRL[kTs]) + (1.5− de←FR[kTs])

2
.

We derive the arbitrary y-axis relative velocity at time t = kTs
by the backward-Euler approximation and low-pass filter:

dy

dt
(kTs) = a

dy

dt
((k − 1)Ts)+(1−a)

[
y (kTs)− y ((k − 1)Ts)

Ts

]
where a ∈ [0, 1]. For this experiment, we select Ts = 0.1,
Ns = 7, a = 0.97.

B. Pseudocode of Coil Geometry Learning

We summarized the coil geometry learning presented in
subsection III-C as the pseudocode in Algorithm 1.
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