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Abstract—Drift-free and accurate rotational motion tracking
is one of the most critical components for visual navigation of
free-flying robots operating in microgravity environments, such
as the International Space Station (ISS), where unrestricted 360-
degree rotational motion is intrinsic. Traditional methods based
on the Manhattan world (MW) assumption struggle in such
environments due to occlusions and excessive outlier features.
To address these issues, we present a novel Digital Twin-Based
QOutlier Rejection (DTOR) method that leverages the ISS 3D CAD
model to improve the robustness of Manhattan world detection
and drift-free 3-DoF rotational motion estimation. By matching
observed line features against the digital twin, our approach
effectively filters out clutter-induced outliers and extracts reliable
structural features. The proposed method requires only a single
line and plane to estimate absolute and drift-free orientation,
enabling lightweight and efficient computation. Experimental
evaluations on the Astrobee dataset demonstrate that our method
achieves state-of-the-art performance with significantly lower
rotation errors in highly cluttered environments.

Index Terms—Space Robotics, ISS Localization, Manhattan
world, Digital Twin, Rotation Estimation.

I. INTRODUCTION

The Astrobee is the free-flying robot to perform intra-
vehicular activity (IVA) tasks aboard the International Space
Station (ISS) [1], [2]. It provides a microgravity robotic
research facility in the ISS U.S. Orbital Segment (USOS). To
enable autonomous operation aboard the ISS, motion plans for
the Astrobee are typically generated within a CAD model of
the ISS [3]. These plans are then executed onboard the robot
using its localization and navigation software.

Visual localization methods have been actively studied to
enhance the autonomy of Astrobee [3]-[8]. However, even
recent state-of-the-art methods tend to accumulate drift error
over time and require frequent re-initialization of localization.

It is well-known that the rotational drift error and non-
linearity during the 3-DoF camera orientation estimation are
the main sources of positioning inaccuracy [9] in visual
odometry (VO) and visual simultaneous localization and map-
ping (VSLAM). This challenge is even more pronounced in
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Fig. 1. All detected lines in the ISS image (top-left) and the corresponding
rendered image from the 3D CAD digital twin (top-right) in an extremely
cluttered scene. Unreliable features caused by clutter are distinguished from
structural features that align with the Manhattan frame of the ISS (bottom-
left), enabling drift-free camera orientation estimation (bottom-right).

microgravity: unlike ground robots that primarily experience
planar motion, Astrobee undergoes unrestricted 360-degree
rotation in all axes. Therefore, achieving accurate and drift-free
rotational motion estimation is critical for robust and long-term
autonomy on the ISS.

[10]-[14] demonstrate that leveraging structural assump-
tions such as the Manhattan world [15], Atlanta world [16],
and San Francisco world [14] enables achieving highly accu-
rate and drift-free 3-DoF rotation estimation in diverse indoor
and outdoor man-made environments. As shown in Fig 3,
the International Space Station (ISS) is an example of the
Manhattan world, which is characterized by three mutually
orthogonal dominant planes.
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Fig. 2. Astrobee free-flying robots roaming on the ISS. The ISS is a
representative example of a cluttered and dynamic environment, which causes
localization errors for the Astrobee (top). Sample images from the Astrobee
dataset are shown (bottom).

Fig. 3. The International Space Station (ISS) is one of the examples
that satisfy the Manhattan world (MW) assumption, with three dominant
orthogonal directions visualized in red, green, and blue.

However, it is challenging to detect geometric features
(e.g., lines and planes) or maintain consistent data association
since objects such as cargo bags, wires, laptops, and racks
either occlude these features or introduce excessive outliers
(see Fig. 2), which lead to the failure of existing MW-based
algorithms. Identifying reliable landmarks in the presence of
excessive outliers often requires computationally expensive
iterative algorithms, such as deep learning-based methods or
robust optimization techniques, which are not suitable for IVR
systems with limited computational resources.

To address these issues, we propose a novel rotation estima-
tion that fully leverages Digital Twin-Based Outlier Rejection
(DTOR). As shown in Fig. 1, we run the line matching
against the mesh representation of the digital twin (3D CAD
model), eliminating outlier lines not associated with the global
Manhattan world (MW) on the ISS. The proposed method
can effectively extract reliable line landmarks and robustly

estimate 3-DoF camera orientation. Our main contributions
are as follows:

e We propose a novel Digital Twin-Based Outlier Rejection
(DTOR) method that utilizes a 3D CAD model as a
clutter-free digital twin to eliminate unreliable landmarks
in cluttered and dynamic environments.

e We develop a lightweight, drift-free 3-DoF rotational
estimation framework based on robust Manhattan World
(MW) tracking from a single line and plane, which is the
minimal solution.

e We evaluate our method in a challenging ISS environment
and demonstrate improved rotational accuracy and robust-
ness compared to state-of-the-art SLAM and localization
methods.

II. RELATED WORK

Digital Twin-based Data Association. In VSLAM, the local-
ization process is based on visual data association between the
current camera view and the map of the environment. Classical
methods heavily rely on matching feature descriptors, e.g., the
ORB descriptor [17]. However, inaccuracies in the 3D map and
dynamic environments severely degrade the accuracy of this
association.

To address this issue, several works leverage 3D CAD
models of the environment, sometimes called digital twins,
to provide high-fidelity geometric context for perception and
localization. [18] has developed a method to match images
captured by unmanned aerial vehicles (UAVs) with Google
Street View images by back-projecting their textures onto
CAD models of cities. Satellite images have also been used to
localize the current camera view in a fixed global frame. [19]
proposes a technique to match vehicle images with satellite im-
ages by aligning road features. Visual localization techniques
provide accurate localization when visual data association can
be accurately performed. However, they are highly sensitive
to viewpoint variations and environmental conditions. [20]
addresses this limitation by directly aligning the sparse 3D
point cloud from a visual odometry or VSLAM system to a
digital twin, eliminating the dependency on visual matching.
Although their method demonstrates drift-free performance
without relying on visual data, it fails to operate reliably
when significant structural discrepancies exist between the real
environment and the digital twin due to clutter.
Clutter-Resistance SLAM. [21] proposes a clutter-resistant
SLAM algorithm for dynamic industrial environments, which
utilizes point features generated from reflectors and line fea-
tures to improve SLAM robustness. However, since it primar-
ily relies on static features, it struggles to maintain reliability
in the presence of dynamic objects and unexpected clutter.
[22] employs a probabilistic approach using the probability hy-
pothesis density filter to model clutter and missed detections.
While this method effectively reduces the impact of clutter by
down-weighting unreliable measurements, it suffers from high
computational complexity and limited scalability for real-time
industrial applications. [23] shows an episodic non-Markov
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Fig. 4. Geometric relationships between the parallel lines and MW on the
Gaussian sphere. We map the image lines onto the normal vectors of the
great circles (gray dots). The normal vectors from parallel lines lie on a single
dominant plane that is perpendicular to the vanishing direction (red axis). The
plane normal vector (blue axis) also lies on that dominant plane.

localization framework that separates short-term and long-
term features to enhance robustness in dynamic environments.
However, since it does not incorporate geometric constraints
or structural priors, its applicability remains limited in severely
cluttered environments with high visual ambiguity.

MW Assumption-Based Rotation Estimation. Manhattan
world (MW) is widely utilized for estimating drift-free camera
rotation in visual odometry [10], [24] and SLAM [9], [25].

Traditional methods [26], [27] have utilized the distribution
of sampled surface normals to estimate dominant orthogonal
directions in an MW. Although these surface normal-based
sampling approaches demonstrate a stable and accurate rota-
tion estimation, they require a dense surface normal distri-
bution, and at least two orthogonal planes must always be
visible. [10] proposes a line and plane-based method that only
requires a single dominant plane and a parallel line lying on
that plane. This method is primarily specialized in texture-
less environments and sensitive and unstable in the presence
of spurious or noisy line segments.

Although parameter search-based methods [28], [29] guar-
antee global optimality using only line segments by maxi-
mizing the number of inliers, they require more than three
seconds per image to compute the optimal solution. Recent
studies [11], [12] have hybridized these two strategies, but
they still depend on the computationally expensive Branch and
Bound (BnB). [30] employs a hybrid strategy. Although they
have reduced computational load significantly, their method
still suffers when there is a significant amount of outliers.

In this work, we are inspired by the recent efforts to leverage
digital twins for robust localization. We propose to utilize a
static 3D CAD model of the ISS as a digital twin to reject
outlier observations and enable accurate, drift-free rotation
estimation under extreme visual clutter.

Inliers
Outliers

(b) 3D CAD Model

(a) Nav Cam Image

Fig. 5. Line matching and outlier rejection using the digital twin. Inliers (red,
green, blue) represent structural features aligned with the Manhattan world
(MW) and successfully matched with the digital twin. Outliers (magenta)
indicate unreliable features caused by clutter or unstructured objects.

III. BACKGROUND

The Gaussian sphere is a foundation for the geometric
interpretation of image lines and surface normals, representing
a virtual unit sphere centered at the optical center of the
camera. We project a line in an image onto the Gaussian sphere
as a great circle (the intersection of the Gaussian sphere and
the plane defined by the center of projection (COP) and the
line, see Fig. 4).

The great circle of each line can be expressed as a unit
normal vector (gray dots). We transform all image lines
into the normal vectors of the great circles on a Gaussian
sphere. The great circles from the parallel lines intersect at
two antipodal points called a vanishing direction (VD) in the
Manhattan world (MW), which posits that every line and plane
is perpendicular to one of the axes of a single coordinate
system.

We call this fixed coordinate system a Manhattan Frame
(MF). We summarize the abbreviations in Table I. The or-
thogonal surface normals of the MW planes exactly match the
three orthogonal VDs defined by the parallel lines in an ideal
MW. All normal vectors from the parallel lines pointing in the
same direction should lie on the same great circle.

IV. PROPOSED METHOD

We propose a new approach for estimating a camera’s drift-
free 3-DoF rotational motion from an RGB and depth image
pair captured on the ISS. Our method filters out unreliable
landmarks not aligning with the Manhattan world (magenta-
colored lines in Fig. 5) on the ISS, leveraging the 3D CAD
model as a digital twin. An overview of the proposed method
is illustrated in Fig. 6.

TABLE I
ACRONYMS WITH COMPLETE WORDS

Acronym || Meaning

MW Manhattan World
DD

PNV

MF

Dominant Direction
Plane Normal Vector
Manhattan Frame
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Fig. 6. Overview of the proposed drift-free 3-DoF rotation estimation algorithm. The pipeline consists of four main steps: (1) detection of line features from
the input RGB image, (2) rendering the simulated view from the digital twin and performing line matching to reject clutter-induced outliers, (3) detection
and tracking of the dominant plane from the depth map, and (4) estimation of the Manhattan frame from a single line and plane pair using RANSAC.

A. Digital Twin-Based Outlier Rejection

We begin by detecting N line segments in the grayscale
image using LSD [31]. We assume that the camera pose of
the first frame is known. Using the first camera pose or the
estimated camera pose from the previous image frame, we
render the simulated camera view in the clutter-free digital
twin. We then detect line segments in the rendered image
captured from the digital twin. As shown in Fig. 5, we filter
out clutter that does not appear in the digital twin using a
deep learning-based line matching method [32]. Using this
approach, we can effectively remove unreliable line segments
generated in unstructured and cluttered environments.

Following the notation in [21], we refer to lines that do not
comply with the Manhattan world as unreliable landmarks
or outliers, while those matched with the landmarks detected
from the digital twin are referred to as structural landmarks
or inliers.

B. Dominant Plane Detection and Tracking

We subsequently detect a dominant plane from the depth
image’s 3D point cloud using the RANSAC plane detection
method [33]. The algorithm finds the plane supported by the
maximum number of 3D points inliers, i.e., how many 3D
points fall within a given distance threshold from this plane.
As shown in Fig 7, when the density distribution of the surface
normal vectors around the currently tracked normal vector is
too low, our method finds and re-initializes a new dominant
plane. Please refer to [10], [27] for full details of the detection
and tracking of the dominant plane.

C. Single Line and Plane Rotation Estimation

Our method leverages line and plane geometry to determine
MF in the current view. As illustrated in Fig. 8, when a
dominant plane and a parallel line lying on that plane are
found, they uniquely determine the Manhattan world in the
current frame. We utilize this geometric feature in a RANSAC
framework to estimate the camera’s drift-free 3-DoF rotation
by tracking the MF of consecutive frames.

Each RANSAC iteration randomly selects one line among
the reliable structural lines we filtered in Section IV-A. Using

Fig. 7. Dominant plane detection and tracking. Our method detects a single
dominant plane by analyzing the density distribution of the surface normal
vectors. When the density distribution of the surface normal vectors around the
currently tracked normal vector is too low, our method finds and re-initializes
a new dominant plane.

Fig. 8. Determination of the three vanishing points (vi, v2, v3) in the
Manbhattan world. v; is set as the plane normal vector. If the sampled line
corresponds to the thick red line, the cross product of its normal vector (black)
and v determines va. v3 is obtained by taking the cross product of vi and
va.

the tracked plane normal vector v; from Section IV-B, if the
selected line normal corresponds to the black axis in Fig. 8,
the second vanishing point vo (the red axis) can be defined by
computing the cross product with the selected line’s normal.
The third vanishing point v is then automatically defined as
V3 = V] X Va.

V. EXPERIMENTS

We evaluate the proposed method on the Astrobee
dataset [34], collected inside the ISS. The dataset includes



monocular grayscale image sequences during various intra-
vehicular activities across multiple ISS modules, along with
pseudo ground-truth 6-DoF camera poses and detailed 3D
CAD models of the ISS interior. Only a limited number of
sequences provide point cloud data acquired from the Pico
Flexx depth sensor. For these sequences, we first align the
grayscale images with the corresponding depth images to
ensure proper cross-modal consistency before evaluation.

A. Manhattan World Detection

We demonstrate the effectiveness of our method in accu-
rately detecting the Manhattan world under highly cluttered
ISS environments. Fig. 9 illustrates the qualitative results of
our method. The first column shows all detected line segments
using the LSD without any filtering. It contains a large
number of outliers caused by dynamic objects such as wires,
bags, and laptops. In the second column, structural landmarks
extracted from the digital twin CAD model are highlighted,
The third column presents the matched structural landmarks
in the grayscale images after outlier rejection. In the fourth
column, lines are clustered according to their consistency
with the estimated vanishing directions. Finally, the inferred
Manhattan world orientation is visualized in the last column.
Our approach can robustly identify the MW structure, even in
complex and dynamic environments like the ISS.

B. Rotational Motion Tracking

1) Evaluation Criteria: We measure the mean value of the
absolute rotation error (ARE) [27] in degrees and present the
evaluation results in Table II. The smallest rotation error for
each dataset is bolded. We compare our rotational motion
tracking method against state-of-the-art approaches, including
both structural model-based and general-purpose methods. We
use 6-DoF ground-truth camera poses generated through an
offline Structure-from-Motion (SFM) process, as described
in [34].

2) Methods for Comparison:

e LPIC [10]: A lightweight visual compass that estimates
camera orientation using a single dominant plane and par-
allel lines, designed specifically for MW environments.
We include it as a representative of low-overhead rotation
estimation methods.

e ManhattanSLAM [25]: A SLAM system that combines
points, lines, and planes while modeling a mixture of
Manhattan frames. It serves as a strong MW-based full
SLAM baseline.

e U-ARE-ME [35]: A monocular rotation estimation
method that leverages Manhattan structures without re-
quiring a full SLAM pipeline. We compare it against a
recent lightweight method specialized for MW.

e GS-SLAM [36]: A dense mapping approach using Gaus-
sian Splatting and RGB-D input. It represents state-of-
the-art dense visual SLAM under structured environ-
ments.

e ORB-SLAM3 [37]: A widely used point feature-based
SLAM system supporting monocular, stereo, and RGB-

D sensors. We include it as a general-purpose SLAM
baseline.

3) Experimental Results: Table II compares the average
ARE results of the proposed and state-of-the-art methods, and
Fig. 10 presents the absolute rotation error evaluated at each
frame. The iva_kibo_rot sequence involves complex rotational
camera motion, while iva_kibo_trans exhibits less rotational
motion, with the total traveling rotation below 10 degrees.

While most methods successfully track the nearly static
camera motion in the iva_kibo_trans sequence, structural
model-based RGB-D approaches (LPIC, ManhattanSLAM, U-
ARE-ME) fail to initialize and track structural models due to
cluttered environments in the iva_kibo_rot sequence, resulting
in inaccurate pose estimation. U-ARE-ME, relying solely on
RGB images for Manhattan world detection and tracking,
exhibits the largest ARE. General-purpose methods (ORB-
SLAM3, GS-SLAM) suffer from accumulated errors in the
iva_kibo_rot sequence.

The proposed method achieves accurate and robust rotation
estimation in highly cluttered environments with the help of
our digital twin-based outlier rejection.

C. Runtime Analysis

We analyze the runtime of each module that constitutes
the proposed method, as shown in Table III. First, the image
processing step, including line detection using LSD [31],
takes the longest runtime in the proposed method, approx-
imately ~50ms for processing 15 image lines. Note that
the computational load of image processing, such as line
detection (LSD [31]), can vary significantly depending on
various conditions, including input image size and the length
of detected lines. Subsequently, we compute surface normals
from the depth images and track the dominant plane, which
takes approximately ~10ms. The initial Manhattan world
detection, finding the San Francisco world (SFW) model, and
tracking the corresponding SFW frames take about ~7ms,
~2ms, and ~2ms, respectively. The total computation time
of the proposed digital twin-based method, excluding image
processing such as line detection, is approximately ~20ms
per image frame.

D. Implementation Details

We have implemented and tested the proposed method in
MATLAB R2023b on a desktop computer with an Intel Core
15-12400F (2.50 GHz) CPU and 32 GB memory. The system
is also equipped with an NVIDIA GeForce RTX 3060 GPU,
which was used for real-time differentiable rendering in GS-
SLAM [35] and for running deep learning-based methods such
as U-ARE-ME [36] and line matching [32] in our method.

VI. DISCUSSION

A. Limitations

While the proposed method effectively improves rotational
motion estimation in cluttered environments using a digital
twin, several practical limitations remain. The primary lim-
itation is the reliance on the completeness and accuracy of
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Fig. 9. Qualitative results of Manhattan world detection using the proposed method. The line colors in the second and third columns indicate that lines with
the same color are matched to each other. In the rightmost column, colored thick and thin lines denote the estimated 3-DoF camera orientation and the MW,

and the black lines represent the ground-truth camera orientation.

TABLE II
COMPARISON OF METHODS ON ASTROBEE DATASETS.

Dataset Structural Model-based Methods \ General-purpose Methods \ Length (deg) # of frame
Proposed LPIC ManhattanSLAM  U-ARE-ME | GS-SLAM  ORB-SLAMS3 |
kibo_rot 1 1.75 2.32 4.26 63.67 7.17 4.09 172 164
Astrobee  kibo_rot 2 1.09 2.74 2.94 49.56 14.53 3.42 93 136
Dataset  kibo_trans 1.44 3.56 1.66 32.03 1.17 1.47 16 231
Average 1.43 2.87 2.95 48.42 ‘ 7.62 2.99 ‘ - -
TABLE III discrepancies arise because the CAD model only approximates

RUNTIME ANALYSIS OF PROPOSED METHOD

Module || Runtime
Preprocessing (Line Detection) 32.62 ms
Surface Normal & Mean Shift 10.02 ms

Digital Twin-Aided Outlier Rejection 3.07 ms
Single Line and Plane RANSAC 6.67 ms

the digital twin model. As illustrated in Fig. 12, mismatches
between the digital twin 3D CAD model and the real ISS
environment limit the effectiveness of our approach. These

the overall appearance of the ISS using simple textures,
resulting in a lack of realistic details and missing temporary
modifications. In some cases, the textures are also incor-
rectly oriented or misaligned, further reducing the accuracy
of landmark matching and leading to false rejections or
missed detections of valid line features. By refining the 3D
CAD model with more detailed and realistic 3D textures, our
method’s efficiency and accuracy can be further maximized,
showing high potential for enhanced performance in real-world
applications.

In addition, the proposed method focuses solely on ro-
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Fig. 10. Comparison of Absolute Rotation Error (ARE) in degrees against state-of-the-art methods on the Astrobee dataset.

With DTOR Without DTOR

Angle (rad)
Angle (rad)

. \_/ 4 \\“\-//

60 80
Frame Index

20 40 60 80 20 40 100 120 140

Frame Index

100 120

Angle (rad)

With DTOR Without DTOR

Angle (rad)

60 100

Frame Index

60 80 100

Frame Index

True (Roll) Proposed (Roll) True (Pitch)

True (Yaw)

Proposed (Pitch) Proposed (Yaw)

Fig. 11. Ablation study on the effectiveness of the proposed Digital Twin-Based Outlier Rejection (DTOR).
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Fig. 12. The mismatched regions (marked by boxes) between the ISS digital
twin 3D CAD model and the real environment prevent correct line feature
matching, which ultimately limits the effectiveness of our proposed method.

tational motion estimation and does not address translation
estimation, which is essential for achieving full 6-DoF pose
estimation. Incorporating translation estimation remains chal-
lenging, particularly in environments where reliable point
correspondences are difficult to obtain due to repetitive pat-
terns and occlusions. Our digital twin-based outlier rejection
(DTOR) approach can also be effectively extended to address
translation estimation. For example, structural landmarks veri-
fied through the digital twin can provide reliable anchor points
for constraining translation, especially in cluttered environ-
ments where point-based methods struggle.

Furthermore, the current evaluation is limited by the lack of
sequences containing depth data, which prevented us from per-
forming extensive validation across sufficiently diverse scenes.
Recent datasets collected by the Intelligent Robotics Group
at NASA Ames Research Center, including those from 2024,
contain significantly more depth data. Our research group, the
Machine Perception and Intelligence Lab, is currently working
on constructing enhanced datasets based on these collections,
including pseudo ground-truth annotations, to enable more
comprehensive evaluations in future studies.

To address these limitations, future work will explore data-
driven refinement of the digital twin using real-world sensor
data collected from the ISS. By adapting the CAD model to
more accurately reflect the current environment, we aim to
improve feature correspondence reliability and enhance the
effectiveness of digital twin-based outlier rejection.

B. Future Work

Future work will focus on enhancing the practical deploy-
ment of the proposed method and extending its capabilities
toward full 6-DoF SLAM. Building on our successful vali-
dation in the ideal Manhattan World environment using the
ICL-NUIM dataset [36], we plan to integrate the accurately
estimated Manhattan frames from the ISS environment into the
3D Gaussian Splatting SLAM [36] framework. By aligning the
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Fig. 13. Visualization of 3D Gaussians aligned with the detected Manhattan
frame. The normal vectors (magenta) of Gaussians, the shortest axis of 3D
Gaussians, are regularized along the dominant structural directions, resulting
in improved geometric consistency and more stable scene reconstruction.

normal vectors of 3D Gaussians with the dominant axes of the
Manhattan World, we aim to regularize Gaussians’ orientation,
leading to improved scene structure representation and more
stable mapping results. This effect is visually illustrated in
Fig. 13, where the 3D Gaussians are successfully aligned
according to the detected Manhattan frame, demonstrating
enhanced structural consistency.

This normal alignment strategy addresses one of the key
weaknesses of conventional Gaussian Splatting SLAM, which
often suffers from poor normal estimation and fragmented
reconstructions in complex environments.

In future experiments, we will apply this approach to real-
world ISS datasets, leveraging the precise Manhattan World
structures extracted from our system to guide normal align-
ment in highly cluttered and dynamic scenes. This extension
will contribute to achieving real-time and drift-free navigation
capabilities, ultimately advancing autonomous operations in
space robotics platforms such as Astrobee.

CONCLUSION

We presented a digital twin-based outlier rejection method
for robust Manhattan World (MW) detection and drift-free 3-
DoF rotational motion estimation in cluttered and dynamic
environments such as the International Space Station (ISS).
By leveraging the ISS 3D CAD model as a digital twin, the
proposed method effectively filters out clutter-induced outliers
and extracts reliable structural features with minimal compu-
tational overhead. Experimental evaluations on the Astrobee
dataset demonstrated that our method achieves state-of-the-art
performance, significantly reducing rotation errors in highly
cluttered environments.
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